Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toward better solar cells: Chemists gain control of light-harvesting paths

University of Florida chemists have pioneered a method to tease out promising molecular structures for capturing energy, a step that could speed the development of more efficient, cheaper solar cells.

"This gives us a new way of studying light-matter interactions," said Valeria Kleiman, a UF associate professor of chemistry. "It enables us to study not just how the molecule reacts, but actually to change how it reacts, so we can test different energy transfer pathways and find the most efficient one."

Kleiman is the principal investigator in the research featured in a paper set to appear Friday in the journal Science.

Her work focuses on molecules known as dendrimers whose many branching units make them good energy absorbers. The amount of energy the synthetic molecules can amass and transfer depends on which path the energy takes as it moves through the molecule. Kleiman and three co-authors are the first to gain control of this process in real time. The team demonstrated that it could use phased tailored laser pulses -- light whose constituent colors travel at different speeds -- to prompt the energy to travel down different paths.

"What we see is that we control where the energy goes by encoding different information in the excitation pulses," Kleiman said.

Researchers who now test every new molecular structure for its energy storage and transfer efficiency may be able to use what Kleiman called a new spectroscopic tool to quickly identify the most promising structures for photovoltaic devices.

"Imagine you want to go from here to Miami, and the road is blocked somewhere," she said. "With this process, we're able to say, 'Don't take that road, follow another one instead.'"

The other authors of the Science paper are Daniel Kuroda, C.P. Singh and Zhonghua Peng. The research was supported by UF and the National Science Foundation.

Valeria Kleiman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>