Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Software helps decrypt embryonic development


When new life develops, a tiny ball of initially identical cells has to form the different body parts of the mature organism. Sixty years ago, Alan Turing proposed that this body patterning is achieved by two types of signaling molecules that spread in the developing tissues to create a spatial pattern. Scientists from the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen have now developed new mathematical approaches and software to systematically analyze realistic pattern forming networks that involve more than two molecules. The software can be used to analyze how patterns form during development and to create novel patterns for bioengineering approaches.

More than six decades ago, Alan Turing - the father of modern computer science, famous for decrypting messages from the Enigma machine during World War II - postulated a model explaining how the body is patterned during embryonic development. In the reaction-diffusion model that he proposed, two signaling molecules react with each other and spread through the embryo by diffusion.

Model of a classical Turing network compared to the extended Turing networks analyzed with the software RDNets. Background: a self-organizing labyrinthine Turing pattern

Luciano Marcon/ Friedrich Miescher Laboratory Tübingen

Turing showed mathematically that the two molecules can form spatial patterns in the embryo if one molecule moves faster than the other. The resulting high and low molecule concentrations could then provide the cells with information on how to differentiate and where to form different body parts.

Although Turing’s patterns remarkably resemble the patterns observed during normal development, Turing models have been limited to two mobile signaling molecules and could not take into account our current knowledge about the complex underlying gene regulatory networks, which have only been identified over the last few decades after Turing’s death.

Now, a paper published in the journal eLife extends Turing’s original approach to the post-genomic era. To include the effect that gene regulatory networks have on pattern formation, a team led by Dr. Patrick Müller with scientists from the Friedrich Miescher Laboratory in Tübingen and the Centre for Genomic Regulation in Barcelona developed a new computational method to analyze and simulate the formation of patterns in reaction-diffusion networks with both mobile and immobile molecules.

“Real-life patterning systems don´t consist of the simplified two-component networks used in classical Turing models. We wanted to analyze more complex systems and to create a user-friendly software that allows us to uncover new biologically relevant network designs”, explains Dr. Luciano Marcon, first author of the study.

The analysis of Turing models involves tedious mathematics, and it takes approximately two pages to analyze a given network by hand. Extending this approach to a systematic analysis with millions of possible networks would seem impossible. The scientists therefore used a modern computer algebra system and developed the software RDNets, which can perform the tedious mathematics automatically within a few minutes.

Screening millions of possible reaction-diffusion networks with their software, the scientists discovered that most of the newly identified patterning networks do not need to fulfill the condition of differential signal mobility that Turing postulated and that has been thought to be indispensable. Instead, patterns can also form when the signaling molecules are equally mobile or even with any combination of signal mobilities. “We have found that realistic reaction-diffusion systems follow mechanisms that are fundamentally different from the previous concepts”, says Dr. Patrick Müller.

The scientists used their software to analyze several developmental systems, from the generation of progenitor tissues to the formation of fingers. In addition to its relevance for developmental biology, RDNets may also be useful for bioengineers. The software enables users to model many patterning processes and to design underlying gene regulatory circuits that can then be built synthetically. This should be of great use for tissue engineering approaches, where the software user can design regions of interest for the expression of differentiating factors to induce specific tissues in defined domains.

About the software
Systems biology focuses on the study of biochemical networks, where molecules are the nodes and the molecular interactions are the edges. The dynamics of these networks can be described by differential equations that represent the behavior of the molecules in space and time. There are two ways to study differential equations: either by finding an analytical solution to the equations, or by performing numerical simulations. Traditionally, the first approach is performed manually by mathematicians who use algebra to write down a closed-form solution. This solution describes the behavior of the system for all possible parameter values. The second approach is instead performed by computers and involves the execution of thousands of repetitive calculations with the aim to obtain a list of numerical values that describe the behavior of the system under specific conditions, i.e. for a set of representative parameter values. Therefore, analytical approaches are preferable because they provide an exhaustive description of the system, in contrast to numerical simulations which can only sample a subset of the parameter space. In practice, however, analytical approaches are limited to simple networks because the mathematics becomes too complicated as the size of the problem grows, and the manual solution of the equations becomes unfeasible.

The software RDNets published in eLife was able to overcome this limitation by automating a linear stability analysis of partial differential equations with the aid of a computer algebra system. This novel approach of an automated high-throughput mathematical analysis can be used to screen for new biochemical Turing networks that can form self-organizing periodic patterns. The analysis can be constrained with qualitative and quantitative experimental data, which makes RDNets an unprecedented tool for users that aim to study developmental patterning networks or to design reaction-diffusion synthetic circuits. The software is available online at and runs on most web browsers.

Original Publication
Marcon L, Diego X, Sharpe J, Müller P. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife. 2016 Apr 8;5. pii: e14022. doi: 10.7554/eLife.14022.

Dr. Patrick Müller
Max Planck Research Group “Systems Biology of Development”
phone: 07071 601-815

Nadja Winter (PR Officer)
phone: +49 7071 601- 444

Weitere Informationen:

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>