Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft-shelled turtles urinate through mouth

11.10.2012
Soft-shelled turtles excrete urea through mouth

Chinese soft-shelled turtles are exquisitely adapted to their aquatic lifestyle, sitting contentedly on the bottom of brackish muddy swamps or snorkelling at the surface to breath.

According to Y. K. Ip from the National University of Singapore, they even immerse their heads in puddles when their swampy homes dry up: which intrigued Ip and his colleagues. Why do these air-breathing turtles submerge their heads when they mainly depend on their lungs to breathe and are unlikely to breathe in water?

Given that some fish excrete waste nitrogen as urea – in addition to ammonia – and expel the urea through their gills, the team wondered whether the turtles were plunging their heads into water to excrete waste urea through their mouths, where they have strange gill-like projections. Ip and his colleagues publish their discovery that turtles effectively urinate through the mouth in The Journal of Experimental Biology at http://jeb.biologists.org.

Purchasing turtles from the local China Town wet market and immersing them in water for 6 days, the team measured the amount of urea that passed into the turtles' urine and found that only 6% of the total urea that the animals produced was excreted through the kidneys. Removing the turtles from the water and providing them with a puddle to dip their heads into, the team noticed that the turtles submerged their heads occasionally and could remain underwater for periods lasting up to 100 minutes. They also calculated the excretion rate of urea through the mouth by measuring the amount of urea that accumulated in the water and found that it was as much as 50 times higher than the excretion rate through the cloaca. And when the team injected urea into the turtles and measured their blood- and saliva-urea levels, they realised that the saliva-urea levels were 250 times greater than in the blood. The turtles were dipping their heads into water to excrete urea through their mouths.

Knowing this, the team reasoned that the animals must produce a specialised class of protein transporters in their mouths to expel the waste and, as these transporters can be deactivated by phloretin, the team decided to test the effect of phloretin on the turtle's ability to excrete urea. When the turtles were supplied with phloretin in their puddle of water, they were unable to excrete urea from their mouths when they submerged their head. And when the team analysed the turtles' cDNA, they found that the animals carried a gene that was very similar to urea transporters found in other animals. Finally, they checked to see if the turtles express this gene in their mouths and found evidence of the mRNA that is necessary to produce the essential urea transporter, allowing the reptiles to excrete urea waste through the mouth.

So, why do Chinese soft-shelled turtles go to such great lengths to excrete urea through their mouths when most other creatures do it through their kidneys? Ip and his colleagues suspect that it has something to do with their salty environment. Explaining that animals that excrete urea have to drink a lot, they point out that this is a problem when the only water available is salty – especially for reptiles that cannot excrete the salts. The team says, 'Since the buccopharyngeal [mouth and throat] urea excretion route involves only rinsing the mouth with ambient water, the problems associated with drinking brackish water… can be avoided'.

###

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/21/3723.abstract

REFERENCE: Ip, Y. K., Loong, A. M., Lee, S. M. L., Ong, J. L. Y., Wong, W.P. and Chew, S. F. (2012). The Chinese soft-shelled turtle, Pelodiscus sinensis, excretes urea mainly through the mouth instead of the kidney. J. Exp. Biol. 215, 3723-3733.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>