Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft Grip - Pneumatic elastomers as robotic arms

24.01.2011
It looks like a starfish made of soft plastic. When air is blown into it through a thin tube it comes to life and the starfish closes like a hand. It does this so gently that it can grasp a raw egg without breaking it.

This starfish-like grabber is the prototype for a pneumatic soft robotic arm made of soft plastic that has been introduced in the journal Angewandte Chemie by George M. Whitesides and his team at Harvard University (Boston, USA).


Whether used in the production of machines or modern surgery, in the deactivation of explosive devices or unmanned spacecraft, robots have become indispensable in many areas. However, the manipulation of delicate objects, such as fruit or internal organs, remains a difficult task for conventional hard robotic arms. It could be easier with soft robot components.

Whitesides and his co-workers want to realize this idea with a new approach based on pneumatic networks (PneuNets): they embedded channels in elastic plastics known as elastomers. To actuate movement, the channels are simply inflated like balloons. This causes the channels to expand into those areas of the elastomer that are the most yielding. In homogeneous elastomers, these are the areas with the thinnest walls; if there are different materials they are the areas with walls made of the softer, more elastic of the materials. To make room for all of the bulky inflated channels next to each other, the entire component curves so that the more severely stretched walls are on the outside. To produce prototypes capable of complex movement, the researchers combined a series of such components.

How the component deforms depends on both the design and the materials used. Whitesides and his co-workers joined parts made of two different stiff silicon elastomers to program the movement. They were thus able to make starfish-like grabbers. Inflating these devices causes them to curl around an object to grasp it like fingers on a hand. Their touch is so soft that they can even be entrusted with a raw egg or a living mouse. In contrast to hard robotic arms, no complex precisely tuned control with sensors is necessary.

Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/contact.html

Title: Soft Robotics for Chemists

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201006464

George M. Whitesides | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://gmwgroup.harvard.edu/contact.html

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>