Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft Grip - Pneumatic elastomers as robotic arms

24.01.2011
It looks like a starfish made of soft plastic. When air is blown into it through a thin tube it comes to life and the starfish closes like a hand. It does this so gently that it can grasp a raw egg without breaking it.

This starfish-like grabber is the prototype for a pneumatic soft robotic arm made of soft plastic that has been introduced in the journal Angewandte Chemie by George M. Whitesides and his team at Harvard University (Boston, USA).


Whether used in the production of machines or modern surgery, in the deactivation of explosive devices or unmanned spacecraft, robots have become indispensable in many areas. However, the manipulation of delicate objects, such as fruit or internal organs, remains a difficult task for conventional hard robotic arms. It could be easier with soft robot components.

Whitesides and his co-workers want to realize this idea with a new approach based on pneumatic networks (PneuNets): they embedded channels in elastic plastics known as elastomers. To actuate movement, the channels are simply inflated like balloons. This causes the channels to expand into those areas of the elastomer that are the most yielding. In homogeneous elastomers, these are the areas with the thinnest walls; if there are different materials they are the areas with walls made of the softer, more elastic of the materials. To make room for all of the bulky inflated channels next to each other, the entire component curves so that the more severely stretched walls are on the outside. To produce prototypes capable of complex movement, the researchers combined a series of such components.

How the component deforms depends on both the design and the materials used. Whitesides and his co-workers joined parts made of two different stiff silicon elastomers to program the movement. They were thus able to make starfish-like grabbers. Inflating these devices causes them to curl around an object to grasp it like fingers on a hand. Their touch is so soft that they can even be entrusted with a raw egg or a living mouse. In contrast to hard robotic arms, no complex precisely tuned control with sensors is necessary.

Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/contact.html

Title: Soft Robotics for Chemists

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201006464

George M. Whitesides | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://gmwgroup.harvard.edu/contact.html

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>