Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How soft corals defy their environment

17.08.2011
Protein favors calcite formation in aragonite sea

Calcium carbonate is a salt for all seasons. It turns up not only in marble, but also in biogenic sediments such as limestone and coral reefs – and even in pearls. The compound exists in two major crystalline forms, as calcite or aragonite. However, it is not clear what determines which variant an organism will exploit under conditions in which both forms can precipitate.

A team of researchers led by LMU geobiologist Dr. Azizur Rahman, who is also a Research Fellow of the Alexander von Humboldt Foundation, has now answered this question, in collaboration with colleagues based at the University of the Ryukyu Islands in Japan. Together, the scientists have shown that, in the soft coral species Lobophytum crissum, a secreted, extracellular protein known as ECMP-67 is the decisive factor that results in the precipitation of calcite, irrespective of the chemical conditions prevailing in the surrounding seawater. “Over the course of Earth’s history, and most probably depending on the relative amounts of dissolved magnesium and calcium ions, either calcite or aragonite has dominated in the world’s oceans,” says Professor Gert Wörheide, one of the authors of the new study.

Current conditions favor the formation of aragonite, and many stony corals build their skeletons exclusively from this material. However, thanks to ECMP-67, Lobophytum crassum can still produce calcite in an aragonite sea. “We have also been able to show how the extracellular protein ECMP-67 contributes to the production of calcite at the molecular level,” says Rahman. “These findings should also allow us to elucidate the crystal structure of calcite in natural environments.” The study was funded by the Alexander von Humboldt Foundation and the Japanese Society for the Promotion of Sciences. (suwe/PH)

Publication:
Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein
Azizur Rahman, Tamotsu Oomori and Gert Wörheide
Journal of Biological Chemistry 286: 31638-31649; 2 September 2011
Doi 10.1074/jbc.M109.070185
Contact:
Dr. Azizur Rahman
Department of Earth and Environmental Sciences, Paleontology and Geobiology
LMU Munich
Phone: +49 89 / 2180 6711
Email: a.rahman@lrz.uni-muenchen.de

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
http://www.palmuc.de
http://www.uni-muenchen.de

Further reports about: Azizur ECMP-67 Lobophytum cellular protein coral reef natural environment

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>