Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Socially isolated rats are more vulnerable to addiction, report researchers

24.01.2013
The effects of social isolation persist even after the rats are reintroduced into the community of other rats

Rats that are socially isolated during a critical period of adolescence are more vulnerable to addiction to amphetamine and alcohol, found researchers at The University of Texas at Austin. Amphetamine addiction is also harder to extinguish in the socially isolated rats.

These effects, which are described this week in the journal Neuron, persist even after the rats are reintroduced into the community of other rats.

"Basically the animals become more manipulatable," said Hitoshi Morikawa, associate professor of neurobiology in the College of Natural Sciences. "They're more sensitive to reward, and once conditioned the conditioning takes longer to extinguish. We've been able to observe this at both the behavioral and neuronal level."

Morikawa said the negative effects of social isolation during adolescence have been well documented when it comes to traits such as anxiety, aggression, cognitive rigidity and spatial learning. What wasn't clear until now is how social isolation affects the specific kind of behavior and brain activity that has to do with addiction.

"Isolated animals have a more aggressive profile," said Leslie Whitaker, a former doctoral student in Morikawa's lab and now a researcher at the National Institute on Drug Abuse. "They are more anxious. Put them in an open field and they freeze more. We also know that those areas of the brain that are more involved in conscious memory are impaired. But the kind of memory involved in addiction isn't conscious memory. It's an unconscious preference for the place in which you got the reward. You keep coming back to it without even knowing why. That kind of memory is enhanced by the isolation."

The rats in the study were isolated from their peers for about a month from 21 days of age. That period is comparable with early-to-middle adolescence in humans. They were then tested to see how they responded to different levels of exposure to amphetamine and alcohol.

The results were striking, said Mickaël Degoulet, a postdoctoral researcher in Morikawa's lab. The isolated rats were much quicker to form a preference for the small, distinctive box in which they received amphetamine or alcohol than were the never-isolated control group. Nearly all the isolated rats showed a preference after just one exposure to either drug. The control rats only became conditioned after repeated exposures.

Morikawa said that this kind of preference for the environmental context in which the reward was received provides researchers with a more useful way of understanding addiction than seeing it as a desire for more of the addictive substance.

"When you drink or take addictive drugs, that triggers the release of dopamine," he said. "People commonly think of dopamine as a happy transmitter or a pleasure transmitter, which may or may not be true, but it is becoming increasingly clear that it is also a learning transmitter. It strengthens those synapses that are active when dopamine is released. It tells our brain that what we're doing at that moment is rewarding and thus worth repeating."

In an important sense, says Morikawa, you don't become addicted to the experience of pleasure or relief but to the constellation of environmental, behavioral and physiological cues that are reinforced when the substance triggers the release of dopamine in the brain.

Morikawa and Whitaker have also been able to document these changes at the neuronal level. Social isolation primes dopamine neurons in the rats' brain to quickly learn to generate spikes in response to inputs from other brain areas. So dopamine neurons will learn to respond to the context more quickly.

If the control, group-housed rats are given enough repeated exposure to amphetamine, they eventually achieve the same degree of addiction as the socially isolated rats. Even from this point of comparable addiction, however, there are differences. It takes longer for the socially isolated rats to kick the addiction to amphetamine when they're exposed to the same extinction protocols. (They spend time in the same environments, but amphetamine is no longer available.)

"So the social isolation leads to addiction more quickly, and it's harder to extinguish," said Whitaker.

Whitaker said that the implications of these findings for addiction in humans are obvious. There is a rich literature that documents the negative effects of social isolation in humans, as well as a great deal of evidence that addiction in rats and humans is functionally similar at the neurological level.

"It's not a one-to-one correlation, but there are socially impoverished human environments," she said. "There are children who are neglected, who have less social input. It's reasonable to make guesses about what the impact of that is going to be."

Morikawa points out that their findings may also have implications for how social isolation during adolescence affects conditionability when it comes to other kinds of rewards.

"We think that maybe what's happening is that the brain reacts to the impoverished environment, to a lack of opportunities to be reinforced by rewarding stimuli, by increasing its sensitivity to reward-based conditioning," said Morikawa. "The deprived brain may be overinterpreting any reward it encounters. And if that's the case, it's likely that you are more conditionable not only to drugs but to any sort of reward, including food reward. One interesting possibility is that it might also make adolescents more prone to food 'addiction,' and then to obesity."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>