Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Social Wasps Show How Bigger Brains Provide Complex Cognition

Across many groups of animals, species with bigger brains often have better cognitive abilities. But it’s been unclear whether overall brain size or the size of specific brain areas is the key.

New findings by neurobiologists at the University of Washington suggest that both patterns are important. The researchers found that bigger-bodied social wasps had larger brains and devoted up to three times more of their brain tissue to regions that coordinate social interactions, learning, memory and other complex behaviors.

Within a species, queens had larger central processing areas – the brain regions that manage complex behaviors – than did worker wasps.

“As the brain gets larger, there’s disproportionately greater investment in the size of brain tissue for higher-order cognitive abilities,” said Sean O’Donnell, lead author and UW psychology professor. “As larger wasp brains evolve, natural selection favors investing most heavily in the brain regions involved in learning and memory.”

For smaller-brained species, cognitive power may be limited by their inability to invest in central brain regions. “In many kinds of animals, it’s only with a larger brain – which is determined by body size – that more complex and flexible behaviors are achieved,” O’Donnell said.

The results appear in the April 11 online edition of the Proceedings of the National Academy of Sciences.

O’Donnell and his co-authors collected samples of 10 types of adult social wasps from four field sites in Costa Rica and Ecuador. As in other studies, they found that the larger the wasp, the larger the overall brain size. But increase of brain size was not uniform across all brain regions.

The researchers dissected the wasp brains and measured the volume of two brain regions. They focused on the central processing region known as the mushroom bodies that, like the cerebral cortex in humans, handles elaborate cognitive functions such as learning, memory and social interactions. They also measured the peripheral processing regions – the optic lobes and the antennal lobes – that deal with vision and smell and are thought to perform more basic cognitive functions.

Across the 10 species, brain areas that process peripheral sensory information increased only slightly with overall brain size. But the wasps with larger bodies – and correspondingly larger-sized brains – had disproportionately larger central processing regions.

“These findings suggest that absolute brain size matters a lot, because it sets limits on central cognitive processing tissue,” O’Donnell said.

The researchers also found that in nine out of 10 wasp species, the queens had larger central processors than worker wasps. This was surprising to the researchers because, in social wasps, queens seem to not perform complex tasks like food collection. They’re relatively inactive, staying in the nest to lay eggs while the workers go out to forage.

But O’Donnell said the greater brain power possessed by social wasp queens may be due to having to defend their social status. “Queens are constantly tested for their potency. They must be up for those social cognitive demands,” he said.

The researchers are now testing the prediction that large-brained species will have enhanced cognitive abilities compared with smaller-brained species, which could have ecological payoffs for challenges like invading new habitats and expanding their geographic range.

The National Science Foundation and the Society for Integrative & Comparative Biology funded the study. Co-authors are Yamile Molina, who received a doctorate in psychology at UW, and Marie Clifford, a UW biology graduate student.

For more information, contact O’Donnell at or 206-543-2315.
For photos, Molly McElroy: or 206-543-2580.

O’Donnell | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>