Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social networking helps hermit crabs find homes

27.04.2010
Previously unknown group behaviors lead to better housing for all

Everyone wants to live in the nicest possible house, ideally with regular upgrades. A recent study by biologists at Tufts University's School of Arts and Sciences and the New England Aquarium reveals that hermit crabs may locate new and improved housing using previously unknown social networking skills.

The scientists combined field studies, lab experiments and computer models to uncover some surprising new tricks that could lead to better house-hunting strategies for humans and hermit crabs alike. Their research, published in the May/June 2010 issue of the journal Behavioral Ecology (available online on April 1), reveals that, contrary to their name, hermit crabs often find the best new shells when they gather together.

Hermit crabs have an unusual lifestyle because they require empty snail shells for shelter. They need to regularly seek new shells as they grow bigger throughout their lives. "Hermit crabs are really picky about real estate because they're constantly getting thrown back into the housing market," says Randi Rotjan, leader of the research team and a co-author with Sara Lewis, professor of biology at Tufts University's School of Arts and Sciences.

Rotjan studied with Lewis to earn her Ph.D. from Tufts Graduate School of Arts and Sciences in 2007 and is now a research scientist at the New England Aquarium. Starting during Rotjan's graduate school days, Rotjan and Lewis have collaborated to gain a better understanding of social interactions among hermit crabs.

Often there aren't enough suitable shells to go around and some hermit crabs have to go naked. The soft, exposed abdomen of these homeless crabs makes them more vulnerable to predators. "I've seen hermit crabs dragging around in bottle caps and even ballpoint pen tops. It's pathetic," says Lewis, senior author on the Behavioral Ecology paper.

So, how do hermit crabs win this life-or-death shell game? One previously identified strategy that apparently helps each hermit crab find the very best shell is joining a lively group activity known as a synchronous vacancy chain. When a new shell becomes available, crabs gather around it and queue up in a line from largest to smallest. Once the largest crab moves into the vacant shell, each crab in the queue swiftly switches into the newly vacated shell right in front of them. As a result, a single vacant shell kicks off an entire chain of shell vacancies that ultimately leads to many crabs getting new, and generally improved, housing.

Hermits Show New Social Behaviors

By seeding vacant shells into field populations and staying up all night to see what happened, the scientists discovered some previously unknown hermit crab behaviors. When a hermit crab discovers an empty but oversized shell, it waits nearby rather than simply walking away. Once a small group gathers, crabs begin piggybacking by holding onto the shell of a larger crab and riding along. Such waiting and piggybacking behaviors seem to increase the chances that a synchronous vacancy chain will happen. "They spend hours queuing up, and then the chain fires off in seconds, just like a line of dominoes," says Rotjan. Computer models populated with virtual hermit crabs and shells confirmed that synchronous vacancy chains depend not only on crab density, but also on how long crabs are programmed to wait near an unsuitable shell.

According to Rotjan, the same kind of synchronous vacancy chain can occur with any animal that relies on discrete and reusable resources, such as anemone-dwelling fish and hole-nesting woodpeckers. Studying vacancy chains in hermit crabs might even lend new perspective on human behaviors, since people regularly participate in synchronous vacancy chains. For example, every September 1, neighborhood streets in Boston, Mass., are clogged with rental trucks and moving vans. This signals that the city's many students are participating in synchronous vacancy chains on this popular start date for annual leases. Like hermit crabs, these savvy apartment-hunters carefully assess all the housing options beforehand, and line up on September 1 to switch into their ideal homes.

Social networking sites like Craigslist and Facebook have made it much easier for people to assess housing options and coordinate their moving dates. Hermit crabs must instead resort to queuing up as they wait near empty shells. But in the end, social networking leads to better housing for everyone.

Research funding was provided by an American Philosophical Society Franklin Research Grant, the Hunterdon Oceanographic Research Fund, and the Smithsonian Institution (Caribbean Coral Reef Ecosystems contribution no. 878).

Rotjan RD, Chabot JR, Lewis SM, 2010. Social context of shell acquisition in Coenobita clypeatus hermit crabs. Behav. Ecol. 19: 10.1093/beheco/arq027

http://beheco.oxfordjournals.org/cgi/content/full/21/3/639

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

VIDEO AVAILABLE AT: http://www.youtube.com/watch?v=kcfDzvm3150

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>