Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social networking helps hermit crabs find homes

27.04.2010
Previously unknown group behaviors lead to better housing for all

Everyone wants to live in the nicest possible house, ideally with regular upgrades. A recent study by biologists at Tufts University's School of Arts and Sciences and the New England Aquarium reveals that hermit crabs may locate new and improved housing using previously unknown social networking skills.

The scientists combined field studies, lab experiments and computer models to uncover some surprising new tricks that could lead to better house-hunting strategies for humans and hermit crabs alike. Their research, published in the May/June 2010 issue of the journal Behavioral Ecology (available online on April 1), reveals that, contrary to their name, hermit crabs often find the best new shells when they gather together.

Hermit crabs have an unusual lifestyle because they require empty snail shells for shelter. They need to regularly seek new shells as they grow bigger throughout their lives. "Hermit crabs are really picky about real estate because they're constantly getting thrown back into the housing market," says Randi Rotjan, leader of the research team and a co-author with Sara Lewis, professor of biology at Tufts University's School of Arts and Sciences.

Rotjan studied with Lewis to earn her Ph.D. from Tufts Graduate School of Arts and Sciences in 2007 and is now a research scientist at the New England Aquarium. Starting during Rotjan's graduate school days, Rotjan and Lewis have collaborated to gain a better understanding of social interactions among hermit crabs.

Often there aren't enough suitable shells to go around and some hermit crabs have to go naked. The soft, exposed abdomen of these homeless crabs makes them more vulnerable to predators. "I've seen hermit crabs dragging around in bottle caps and even ballpoint pen tops. It's pathetic," says Lewis, senior author on the Behavioral Ecology paper.

So, how do hermit crabs win this life-or-death shell game? One previously identified strategy that apparently helps each hermit crab find the very best shell is joining a lively group activity known as a synchronous vacancy chain. When a new shell becomes available, crabs gather around it and queue up in a line from largest to smallest. Once the largest crab moves into the vacant shell, each crab in the queue swiftly switches into the newly vacated shell right in front of them. As a result, a single vacant shell kicks off an entire chain of shell vacancies that ultimately leads to many crabs getting new, and generally improved, housing.

Hermits Show New Social Behaviors

By seeding vacant shells into field populations and staying up all night to see what happened, the scientists discovered some previously unknown hermit crab behaviors. When a hermit crab discovers an empty but oversized shell, it waits nearby rather than simply walking away. Once a small group gathers, crabs begin piggybacking by holding onto the shell of a larger crab and riding along. Such waiting and piggybacking behaviors seem to increase the chances that a synchronous vacancy chain will happen. "They spend hours queuing up, and then the chain fires off in seconds, just like a line of dominoes," says Rotjan. Computer models populated with virtual hermit crabs and shells confirmed that synchronous vacancy chains depend not only on crab density, but also on how long crabs are programmed to wait near an unsuitable shell.

According to Rotjan, the same kind of synchronous vacancy chain can occur with any animal that relies on discrete and reusable resources, such as anemone-dwelling fish and hole-nesting woodpeckers. Studying vacancy chains in hermit crabs might even lend new perspective on human behaviors, since people regularly participate in synchronous vacancy chains. For example, every September 1, neighborhood streets in Boston, Mass., are clogged with rental trucks and moving vans. This signals that the city's many students are participating in synchronous vacancy chains on this popular start date for annual leases. Like hermit crabs, these savvy apartment-hunters carefully assess all the housing options beforehand, and line up on September 1 to switch into their ideal homes.

Social networking sites like Craigslist and Facebook have made it much easier for people to assess housing options and coordinate their moving dates. Hermit crabs must instead resort to queuing up as they wait near empty shells. But in the end, social networking leads to better housing for everyone.

Research funding was provided by an American Philosophical Society Franklin Research Grant, the Hunterdon Oceanographic Research Fund, and the Smithsonian Institution (Caribbean Coral Reef Ecosystems contribution no. 878).

Rotjan RD, Chabot JR, Lewis SM, 2010. Social context of shell acquisition in Coenobita clypeatus hermit crabs. Behav. Ecol. 19: 10.1093/beheco/arq027

http://beheco.oxfordjournals.org/cgi/content/full/21/3/639

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

VIDEO AVAILABLE AT: http://www.youtube.com/watch?v=kcfDzvm3150

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>