Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sociability may depend upon brain cells generated in adolescence

05.10.2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

When the same process is interrupted in adults, no such behavioral changes were noted, according to research published in the Oct. 4 issue of the journal Neuroscience.

"This has important implications in understanding social development at the molecular level," said Arie Kaffman, assistant professor of psychiatry and senior author of the study.

Scientists have known for quite some time that new brain cells are continually generated in specific brain regions after birth. This process, called neurogenesis, occurs at a significantly greater rate during childhood and adolescence than in adulthood, yet most research has focused upon the function of these neurons in older brains.

The Yale team decided to explore the function of these new brain cells in mice of different ages. Normal adult mice tend to spend a lot of time exploring and interacting with unfamiliar mice. However, adult mice that had neurogenesis blocked during adolescence showed no interest in exploring other adult mice and even evaded attempts made by other mice to engage in social behavior.

"These mice acted like they did not recognize other mice as mice," Kaffman said.

Blocking adult neurogenesis had no effect on social behavior, suggesting that brain cells generated during adolescence make a very different contribution to brain function and behavior in adulthood, note the scientists.

Intriguingly, schizophrenics have a deficit in generating new neurons in the hippocampus, one of the brain areas where new neurons are created. Given that symptoms of schizophrenia first emerge in adolescence, it is possible that deficits in generating new neurons during adolescence or even in childhood holds new insights into the development of some of the social and cognitive deficits seen in this illness, Kaffman said.

Other Yale authors include Lan Wei and Ronald S. Duman.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Sociability brain area brain cell new brain cells social behavior

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>