Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soaring is better than flapping

09.12.2010
Small migrating birds also save energy as they fly

Large birds, such as storks, save energy on the flight to their wintering grounds by soaring through the air on thermal currents. Until now, however, we knew nothing about the flight patterns of small migrating songbirds, such as whether they flap their wings or soar and whether these styles of flight allow them to save energy. Now, a team of scientists at the Max Planck Institute for Ornithology in Radolfzell, Ben-Gurion-University of the Negev, and Hebrew University of Jerusalem have tracked the movement of European bee-eaters (Merops apiaster) along the Africa-Eurasia migration flyway with the help of tiny radio transmitters. Analysing measurements of heart rate, flight speed and flying style, they found out that these small birds also soars. Further, they found that the birds fly just as quickly when soaring as when flapping their wings, while using as little energy as it takes to sit in its nest. (Published in PloSOne 11, November 2010)


European bee-eater during flight.
Image: Jorge Rodrigues


When we think of birds gliding majestically through the sky without beating their wings, we imagine large species like storks or hawks searching silently for prey. The flight patterns of large birds have been well studied. Ornithologists know how quickly and how far they fly, and how often they flap or soar while in flight. However, much less is known about these patterns in smaller birds. Until recently, it was thought that small birds were not able to glide and save energy in the same way, due to their smaller musculature and wings. Gliding would reduce the flight speed, so it was assumed.

In a recently published study, scientists at the Ben-Gurion University of the Negev and the Hebrew University of Jerusalem, along with Martin Wikelski, director of the Max Planck Institute for Ornithology in Radolfzell, determined for the first time the energy use of small songbirds in the wild. The researchers attached tiny radio transmitters onto the backs of European bee-eaters (Merops apiaster) caught in Israel to record their wing beat frequency, heart rate and flight speed. In order to estimate the birds’ energy use, they determined in the laboratory that the birds’ heart rate increased with oxygen consumption, and therefore the heart rate measurements indicate the birds’ energy use while flying.

"Analysing the data, we were surprised to see that bee-eaters often switch between soaring and flapping, and also that the frequency of heart beats while gliding was only as half what it was while flapping," says Martin Wikelski. "The birds needed the same amount of energy while soaring or gliding as they did when they were resting on a branch or in a nest." In contrast, previous studies with larger birds showed that energy use was at least 30 percent higher when the birds were gliding than when they were resting. Thus, soaring and gliding flight means a considerably higher savings of energy for small migrating birds than for larger species. In addition, the scientists did not find any loss of flight speed when birds were gliding.

The results of this study not only provide an answer to the question of whether small migrating birds can soar during their long journey, but also show that they travel just as fast while doing so and use less energy.

[LA/SD]

Original work:

Nir Sapir, Martin Wikelski, Marshall D. McCue, Berry Pinshow, Ran Nathan
Flight modes in migrating European bee-eaters: Heart rate may indicate low metabolic rate during soaring and gliding

PloSOne 5(11): e13956.doi:10.1371/journal.phone.0013956

Contact:

Nir Sapir
The Hebrew University of Jerusalem, Department of Evolution, Systematics and Ecology, Jerusalem, Israel
Tel.: +972 2 6586-080
Fax: +972 2 6584-655
E-mail: Nir.sapir@mail.huji.ac.il
Prof. Dr. Martin Wikelski
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-62
E-mail: martin@orn.mpg.de
Leonore Apitz, Press and Public Relations
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-74
E-mail: apitz@orn.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>