Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soaring is better than flapping

09.12.2010
Small migrating birds also save energy as they fly

Large birds, such as storks, save energy on the flight to their wintering grounds by soaring through the air on thermal currents. Until now, however, we knew nothing about the flight patterns of small migrating songbirds, such as whether they flap their wings or soar and whether these styles of flight allow them to save energy. Now, a team of scientists at the Max Planck Institute for Ornithology in Radolfzell, Ben-Gurion-University of the Negev, and Hebrew University of Jerusalem have tracked the movement of European bee-eaters (Merops apiaster) along the Africa-Eurasia migration flyway with the help of tiny radio transmitters. Analysing measurements of heart rate, flight speed and flying style, they found out that these small birds also soars. Further, they found that the birds fly just as quickly when soaring as when flapping their wings, while using as little energy as it takes to sit in its nest. (Published in PloSOne 11, November 2010)


European bee-eater during flight.
Image: Jorge Rodrigues


When we think of birds gliding majestically through the sky without beating their wings, we imagine large species like storks or hawks searching silently for prey. The flight patterns of large birds have been well studied. Ornithologists know how quickly and how far they fly, and how often they flap or soar while in flight. However, much less is known about these patterns in smaller birds. Until recently, it was thought that small birds were not able to glide and save energy in the same way, due to their smaller musculature and wings. Gliding would reduce the flight speed, so it was assumed.

In a recently published study, scientists at the Ben-Gurion University of the Negev and the Hebrew University of Jerusalem, along with Martin Wikelski, director of the Max Planck Institute for Ornithology in Radolfzell, determined for the first time the energy use of small songbirds in the wild. The researchers attached tiny radio transmitters onto the backs of European bee-eaters (Merops apiaster) caught in Israel to record their wing beat frequency, heart rate and flight speed. In order to estimate the birds’ energy use, they determined in the laboratory that the birds’ heart rate increased with oxygen consumption, and therefore the heart rate measurements indicate the birds’ energy use while flying.

"Analysing the data, we were surprised to see that bee-eaters often switch between soaring and flapping, and also that the frequency of heart beats while gliding was only as half what it was while flapping," says Martin Wikelski. "The birds needed the same amount of energy while soaring or gliding as they did when they were resting on a branch or in a nest." In contrast, previous studies with larger birds showed that energy use was at least 30 percent higher when the birds were gliding than when they were resting. Thus, soaring and gliding flight means a considerably higher savings of energy for small migrating birds than for larger species. In addition, the scientists did not find any loss of flight speed when birds were gliding.

The results of this study not only provide an answer to the question of whether small migrating birds can soar during their long journey, but also show that they travel just as fast while doing so and use less energy.

[LA/SD]

Original work:

Nir Sapir, Martin Wikelski, Marshall D. McCue, Berry Pinshow, Ran Nathan
Flight modes in migrating European bee-eaters: Heart rate may indicate low metabolic rate during soaring and gliding

PloSOne 5(11): e13956.doi:10.1371/journal.phone.0013956

Contact:

Nir Sapir
The Hebrew University of Jerusalem, Department of Evolution, Systematics and Ecology, Jerusalem, Israel
Tel.: +972 2 6586-080
Fax: +972 2 6584-655
E-mail: Nir.sapir@mail.huji.ac.il
Prof. Dr. Martin Wikelski
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-62
E-mail: martin@orn.mpg.de
Leonore Apitz, Press and Public Relations
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-74
E-mail: apitz@orn.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>