Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soaring is better than flapping

09.12.2010
Small migrating birds also save energy as they fly

Large birds, such as storks, save energy on the flight to their wintering grounds by soaring through the air on thermal currents. Until now, however, we knew nothing about the flight patterns of small migrating songbirds, such as whether they flap their wings or soar and whether these styles of flight allow them to save energy. Now, a team of scientists at the Max Planck Institute for Ornithology in Radolfzell, Ben-Gurion-University of the Negev, and Hebrew University of Jerusalem have tracked the movement of European bee-eaters (Merops apiaster) along the Africa-Eurasia migration flyway with the help of tiny radio transmitters. Analysing measurements of heart rate, flight speed and flying style, they found out that these small birds also soars. Further, they found that the birds fly just as quickly when soaring as when flapping their wings, while using as little energy as it takes to sit in its nest. (Published in PloSOne 11, November 2010)


European bee-eater during flight.
Image: Jorge Rodrigues


When we think of birds gliding majestically through the sky without beating their wings, we imagine large species like storks or hawks searching silently for prey. The flight patterns of large birds have been well studied. Ornithologists know how quickly and how far they fly, and how often they flap or soar while in flight. However, much less is known about these patterns in smaller birds. Until recently, it was thought that small birds were not able to glide and save energy in the same way, due to their smaller musculature and wings. Gliding would reduce the flight speed, so it was assumed.

In a recently published study, scientists at the Ben-Gurion University of the Negev and the Hebrew University of Jerusalem, along with Martin Wikelski, director of the Max Planck Institute for Ornithology in Radolfzell, determined for the first time the energy use of small songbirds in the wild. The researchers attached tiny radio transmitters onto the backs of European bee-eaters (Merops apiaster) caught in Israel to record their wing beat frequency, heart rate and flight speed. In order to estimate the birds’ energy use, they determined in the laboratory that the birds’ heart rate increased with oxygen consumption, and therefore the heart rate measurements indicate the birds’ energy use while flying.

"Analysing the data, we were surprised to see that bee-eaters often switch between soaring and flapping, and also that the frequency of heart beats while gliding was only as half what it was while flapping," says Martin Wikelski. "The birds needed the same amount of energy while soaring or gliding as they did when they were resting on a branch or in a nest." In contrast, previous studies with larger birds showed that energy use was at least 30 percent higher when the birds were gliding than when they were resting. Thus, soaring and gliding flight means a considerably higher savings of energy for small migrating birds than for larger species. In addition, the scientists did not find any loss of flight speed when birds were gliding.

The results of this study not only provide an answer to the question of whether small migrating birds can soar during their long journey, but also show that they travel just as fast while doing so and use less energy.

[LA/SD]

Original work:

Nir Sapir, Martin Wikelski, Marshall D. McCue, Berry Pinshow, Ran Nathan
Flight modes in migrating European bee-eaters: Heart rate may indicate low metabolic rate during soaring and gliding

PloSOne 5(11): e13956.doi:10.1371/journal.phone.0013956

Contact:

Nir Sapir
The Hebrew University of Jerusalem, Department of Evolution, Systematics and Ecology, Jerusalem, Israel
Tel.: +972 2 6586-080
Fax: +972 2 6584-655
E-mail: Nir.sapir@mail.huji.ac.il
Prof. Dr. Martin Wikelski
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-62
E-mail: martin@orn.mpg.de
Leonore Apitz, Press and Public Relations
Max Planck Institute for Ornithology, Radolfzell
Tel.: +49 7732 1501-74
E-mail: apitz@orn.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>