Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snowflake chemistry could give clues about ozone depletion

09.12.2009
There is more to the snowflake than its ability to delight schoolchildren and snarl traffic.

The structure of the frosty flakes also fascinate ice chemists like Purdue University's Travis Knepp, a doctoral candidate in analytical chemistry who studies the basics of snowflake structure to gain more insight into the dynamics of ground-level, or "tropospheric," ozone depletion in the Arctic.

"A lot of chemistry occurs on ice surfaces," Knepp said. "By better understanding the physical structure of the snow crystal - how it grows and why it takes a certain shape - we can get a better idea of the chemistry that occurs on that surface."

His work on snowflake shape and how temperature and humidity affect it takes place in a special laboratory chamber no larger than a small refrigerator. Knepp can "grow" snow crystals year-round on a string inside this chamber. The chamber's temperature ranges from 100-110 degrees Fahrenheit down to minus 50 degrees Fahrenheit.

Knepp, under the direction of Paul Shepson, professor and head of Purdue's Department of Chemistry, is studying snow crystals and why sharp transitions in shape occur at different temperatures. The differences he sees not only explain why no two snowflakes are identical, but also hold implications for his ozone research in the Arctic Ocean region.

"On the surface of all ice is a very thin layer of liquid water," Knepp said. "Even if you're well below the freezing point of water, you'll have this very thin layer of water that exists as a liquid form. That's why ice is slippery. Whenever you slip, you're not slipping on ice, you're slipping on that thin layer of water."

This thin, or quasi-liquid, layer of water exists on the top and sides of a snow crystal. Its presence causes the crystal to take on different forms as temperature and humidity change.

For example, the sides of a crystal growing in a warmer range of 27-32 degrees Fahrenheit expand much faster than the top or bottom, causing it to take on a platelike structure. Between 14 and 27 degrees Fahrenheit, crystals look like tall, solid prisms or needles.

"As you increase the humidity, you'll get more branching," Knepp said.

Snow crystals transition to other shapes, and sometimes even back and forth, as the temperature and humidity change.

"The bottom line is that the thickness or the presence of this really thin layer of water is what dictates the general shape that the snow crystal takes," Knepp said. "By altering the quasi-liquid layer's thickness, we changed the temperature at which the snow crystal changes shape.

"Until now, nobody knew that the quasi-liquid layer had such a significant role in determining the shape of snow crystals. Our research clearly shows this to be the case."

This knowledge has application for Knepp and his colleagues in their ozone work.

"Most people have probably heard of ozone depletion in the North and South Poles. This occurs in the stratosphere, about 15 miles up," Knepp said. "What people don't know is that we also see ozone levels decrease significantly at ground level."

Ground-level ozone is very important. It gives the atmosphere the ability to clean itself. However, it also is toxic to humans and vegetation at high concentrations, like those found in smog, Shepson said.

Complex chemical reactions regularly take place on the snow's surface. These reactions, which involve the thin layer of water found on the surface of snow crystals, cause the release of certain chemicals that reduce ozone at ground level.

"How fast these reactions occur is partially limited by the snow crystals' surface area," Knepp said. "Snow crystals with more branching will have higher surface areas than non-branched snow crystals, which will allow the rate of reaction to increase."

The need to understand these intricate chemical reactions and their implications for ozone reduction drive the researchers to continue studying snow.

"As the impact of emissions from human activities continues to grow, we need to be able to understand the impact of global average ozone," Shepson said. "Understanding ice and snow is part of that."

Knepp's research was published Oct. 16 in the online journal Atmospheric Chemistry and Physics. A downloadable version of the article is available at http://www.atmos-chem-phys.net/9/7679/2009/acp-9-7679-2009.html

Writer: Kim Schoonmaker, 765-494-2081, kschoonmaker@purdue.edu
Sources: Travis Knepp, 765-496-2404, tnknepp@purdue.edu
Paul Shepson, 765-494-7441, pshepson@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Kim Schoonmaker | EurekAlert!
Further information:
http://www.purdue.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>