Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

You snooze, you lose

10.08.2012
Less sleep leads to more offspring in male pectoral sandpipers

During the breeding season, polygynous male pectoral sandpipers that sleep the least sire the most young. A team of researchers headed by Bart Kempenaers from the Max Planck Institute for Ornithology in Seewiesen has now discovered this extraordinary relationship.


An attentive male sandpiper on the lookout for potential competitors.

© Wolfgang Forstmeier


Courtship flight: This male is trying to impress any watching female sandpipers with its feats of flight and inflated chest.

© Wolfgang Forstmeier

During three weeks of intense competition under the constant daylight of the Arctic summer, males actively court females and compete with other males. Using an innovative combination of tags that monitored movement, male-female interactions, and brain activity in conjunction with DNA paternity testing, the authors discovered that the most sleepless males were the most successful in producing young. As the first evidence for adaptive sleep loss, these results challenge the commonly held view that reduced performance is an evolutionarily inescapable outcome of sleep loss.

Sometimes it would be nice to have 24 hours available to finish the workload of the day. However, the drive for sleep inevitably compromises our performance or even causes us to fall asleep under dangerous situations, such as driving a car. Daily sleep is therefore thought to be essential for regenerating the brain and maintaining performance. This holds true both for humans and other animals. Researchers led by Bart Kempenaers from the Max Planck Institute for Ornithology in Seewiesen have now found that during the three-week mating period male pectoral sandpipers (Calidris melanotos) are active for up to 95% of the time. This is even more remarkable considering the fact that the birds have just arrived in their breeding area in Alaska, after migrating from their overwintering grounds in the southern hemisphere.

Pectoral sandpipers have a polygynous mating system where one male mates with several females. Because males do not engage in parental care, a male's reproductive success is determined exclusively by his access to fertile females. However, gaining this access is not that easy for pectoral sandpipers: “Males have to constantly repel their rivals through male-male competition and simultaneously convince females with intensive courtship display”, says director Bart Kempenaers. Given that the sun never sets during the Arctic summer, males that can engage in this extreme competition 24/7 should be at an advantage.

Indeed, the researchers found that the most active males interacted most with females and sired the most offspring. Paternity was determined by collecting DNA from all males, all females, and all offspring in the study area. To measure activity patterns, the researchers attached transmitters to the feathers of all males and most of the females. These radiotelemetry based senders allowed the team to monitor whether the animal was moving or resting. Finally, recordings of brain and muscle activity confirmed that active birds were awake and that inactive birds were in fact sleeping.
The brain activity recordings also reveal variation in sleep intensity: “Males that slept the least had the deepest sleep”, says co-author Niels Rattenborg who conducts sleep research at Seewiesen. Although this suggests that the birds might compensate for sleep loss by sleeping deeper, the researchers found that even when this was taken into consideration, the birds were still experiencing a deficit in sleep.

Based on the team’s data on birds that returned to the study area across breeding seasons, this reproductive sleep loss apparently has no long-term adverse impact on survival. On the contrary, successful males returned to the breeding area more often when compared to males siring less offspring and were more likely to sire offspring in their second year. Does the study question the dominant view that the function of sleep is to regenerate the brain? The researchers do not wish to go that far, although the findings clearly show that under certain circumstances animals may be able to evolve the ability to forgo, or postpone, large amounts of sleep while maintaining high neurobehavioral performance. Importantly, the finding that not every male does this, even when there are fertile females around, suggests that “Long sleeping males may lack genetic traits that enable short sleeping individuals to maintain high performance despite a lack of sleep”, argues Bart Kempenaers. The researchers believe that determining why only some males engage in this adaptive sleeplessness may provide insight into the evolution of this extreme behaviour, as well as the ongoing debate over the functions of sleep and its relationship to health and longevity in humans.

Contact
Prof. Dr. Bart Kempenaers
Max Planck Institute for Ornithology
Phone: +49 8157 932-334
Fax: +49 8157 932-400
Email: b.kempenaers@­orn.mpg.de
Dr. Niels Rattenborg
Max Planck Institute for Ornithology
Phone: +49 8157 932-279
Email: rattenborg@­orn.mpg.de

Original publication
John A. Lesku, Niels C Rattenborg, Mihai Valcu, Alexei L. Vyssotski, Sylvia Kuhn, Franz Kuemmeth, Wolfgang Heidrich, Bart Kempenaers
Adaptive Sleep Loss in Polygynous Pectoral Sandpipers
Science, advance online publication August 9, 2012

Prof. Dr. Bart Kempenaers | Max-Planck-Institute
Further information:
http://www.mpg.de/5976385/sleeplessness_sandpipers

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>