Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniffing Out Chemical, Biological Threats

14.10.2009
Research to develop a new method to detect biological and chemical threats may also lead to new approaches for removing pollutants from the environment.

The research effort, led by Dr. Hai Xiao of Missouri University of Science and Technology, involves the development of tiny sensors – each about the size of a pinhead – that could be used to detect and identify chemical or biological agents.

Xiao, an associate professor of electrical and computer engineering, along with colleagues from Missouri S&T and the University of Cincinnati are using a porous crystal known as zeolite to develop the sensors.

Zeolite’s molecular structure and unusual properties allow it to detect certain chemicals and trap them, Xiao says.

Funded through a $529,160 grant from the U.S. Army’s Leonard Wood Institute, the researchers are developing prototypes of the sensors, a process for manufacturing them and a means for deploying them in a battlefield or urban warfare situation.

The zeolite sensors would be deployed in the battlefield via “motes” developed by Xiao’s co-investigator, Dr. Jagannathan Sarangapani, the William A. Rutledge-Emerson Distinguished Professor of Electrical Engineering. These are small, battery-powered devices that would hold perhaps a dozen or so sensors and have the ability to communicate with one another via a wireless network. The motes could also be controlled remotely, allowing soldiers to maintain a safe distance from deadly chemicals.

While the sensors are designed to aid the military, Xiao thinks they may also have environmental benefits. In more concentrated quantities, the absorbent properties of zeolite may make it ideal for cleaning up environmental messes, such as a chemical spill.

“It’s more like a sieve and has been used for molecular separations,” he says. “But because of its large surface area, zeolite also acts as an absorbent for efficient collection of target samples from the environment.”

Xiao’s expertise is in developing sensors for military, energy, industry and biomedical applications, while Dr. H.L. Tsai, a professor of mechanical engineering at Missouri S&T, is an expert in the area of laser fabrication. Working with Tsai is Dr. Junhang Dong, an associate professor of chemical engineering at the University of Cincinnati who is an expert in zeolite materials design and synthesis.

Working with Xiao and Sarangapani is Dr. Sanjeev Agarwal, a research assistant professor of electrical engineering. Agarwal and Sarangapani are developing the distribution system for the sensors.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>