Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniffing Out Chemical, Biological Threats

14.10.2009
Research to develop a new method to detect biological and chemical threats may also lead to new approaches for removing pollutants from the environment.

The research effort, led by Dr. Hai Xiao of Missouri University of Science and Technology, involves the development of tiny sensors – each about the size of a pinhead – that could be used to detect and identify chemical or biological agents.

Xiao, an associate professor of electrical and computer engineering, along with colleagues from Missouri S&T and the University of Cincinnati are using a porous crystal known as zeolite to develop the sensors.

Zeolite’s molecular structure and unusual properties allow it to detect certain chemicals and trap them, Xiao says.

Funded through a $529,160 grant from the U.S. Army’s Leonard Wood Institute, the researchers are developing prototypes of the sensors, a process for manufacturing them and a means for deploying them in a battlefield or urban warfare situation.

The zeolite sensors would be deployed in the battlefield via “motes” developed by Xiao’s co-investigator, Dr. Jagannathan Sarangapani, the William A. Rutledge-Emerson Distinguished Professor of Electrical Engineering. These are small, battery-powered devices that would hold perhaps a dozen or so sensors and have the ability to communicate with one another via a wireless network. The motes could also be controlled remotely, allowing soldiers to maintain a safe distance from deadly chemicals.

While the sensors are designed to aid the military, Xiao thinks they may also have environmental benefits. In more concentrated quantities, the absorbent properties of zeolite may make it ideal for cleaning up environmental messes, such as a chemical spill.

“It’s more like a sieve and has been used for molecular separations,” he says. “But because of its large surface area, zeolite also acts as an absorbent for efficient collection of target samples from the environment.”

Xiao’s expertise is in developing sensors for military, energy, industry and biomedical applications, while Dr. H.L. Tsai, a professor of mechanical engineering at Missouri S&T, is an expert in the area of laser fabrication. Working with Tsai is Dr. Junhang Dong, an associate professor of chemical engineering at the University of Cincinnati who is an expert in zeolite materials design and synthesis.

Working with Xiao and Sarangapani is Dr. Sanjeev Agarwal, a research assistant professor of electrical engineering. Agarwal and Sarangapani are developing the distribution system for the sensors.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>