Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snatched From the Air

20.04.2009
Carbon dioxide as a carbon source - a carbene catalyst opens new perspectives

It’s the reason why chemists envy green plants: by using photosynthesis, plants can easily fix the carbon dioxide that is so plentiful in air to make biomass, or organic compounds.

Chemists would also like to be able to simply produce carbon compounds out of CO2 from air. In contrast to the usual sources of carbon used today—fossil fuels and natural gas—carbon dioxide is a renewable resource and an environmentally friendly chemical reagent.

Unfortunately, its carbon–oxygen bonds are too strong to be broken easily. Researchers working with Yugen Zhang and Jackie Y. Ying at the Institute of Bioengineering and Nanotechnology in Singapore have now developed a novel reaction scheme by which CO2 can be efficiently converted into methanol under very mild conditions. As reported in the journal Angewandte Chemie, it is based on an N-heterocyclic carbene catalyst and a silane as the reducing agent.

The basic framework of an N-heterocyclic carbene is a five-membered ring made of two nitrogen and three carbon atoms. Instead of having the usual four bonds, one of these carbon atoms only has two. The two electrons left over in the form of a lone pair, which makes this species highly reactive—reactive enough to attack CO2.

The researchers in Singapore produced the carbene catalyst used in the reaction in situ from a precursor. The carbene activates the CO2, but is then split off again to end the reaction cycle in its original state. The formal reaction partner is a hydrosilane, an organosilicon compound that acts as a reducing agent. The reaction product into which the CO2 is converted can easily be collected in the form of methanol in the last step of the reaction series. Methanol is an important starting material for many chemical syntheses and serves as an alternative fuel and as a raw material for the production of energy in methanol fuel cells.

The big advantage: unlike prior reaction mechanisms using metal-containing catalysts, air can be used as the source of the CO2 because the carbene catalyst is not sensitive to oxygen. The carbene is more efficient than the metal-containing catalysts as well, and the reaction can be carried out under very mild conditions.

Author: Yugen Zhang, Institute of Bioengineering and Nanotechnology, Biopolis (Singapore), http://www.ibn.a-star.edu.sg/research_areas_7.php?id=110

Title: Conversion of Carbon Dioxide to Methanol with Silanes over N-Heterocyclic Carbene Catalysts

Angewandte Chemie International Edition 2009, 48, No. 18, 3322–3325, doi: 10.1002/anie.200806058

Yugen Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.ibn.a-star.edu.sg/research_areas_7.php?id=110

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>