Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapshots differentiate molecules from their mirror image

29.11.2013
Max Planck researchers are able to reveal the spatial structure of chiral molecules

Small difference, large effect: Most biological molecules occur in two variants, an original and its mirror image. As a result, they are related to one another like the left hand to the right.


Molecular mirror images of, so-called enantiomeres, of dideuterooxirane (grey: hydrogen, green: deuterium, blue: carbon, red: oxygen).

© Rupprecht-Karls-University Heidelberg/O.Trapp


A combination of mass spectrometry and subsequent Coloumb explosion enables an analysis of the chirality of molecules, in this case oxirane.

© Herwig, Zawatzky, Wolf, Trapp, Kreckel

For instance, the left- and right-handed variant of the same molecule makes lemons smell different from oranges. This so-called chirality also plays an important role in pharmaceutical research.

Working in close collaboration, physicists from the Max Planck Institute for Nuclear Physics and chemists from Heidelberg University have now developed a method which, so to speak, takes a snapshot of chiral molecules and so reveals their spatial atomic structure. The molecule's handedness, or chirality, can be directly derived from this information.

Many biological processes are entirely dependent on whether the participating organic molecules are left- or right-handed. Researchers refer to molecules which occur in two forms that are the mirror image of one another as "chiral" molecules. Scientists would therefore like to know how the atoms are arranged relative to one another in such molecules. In scientific jargon this is known as the absolute configuration, and it can be used to identify the molecule's handedness.

While methods for determining the handedness of chiral molecules are indeed available, they do not reveal the absolute configuration without making use of theoretical models. Moreover, no measurement method has previously been available which is capable of investigating the handedness of individual chiral molecules in the gaseous state. The researchers working with Holger Kreckel and Andreas Wolf of the Max Planck Institute for Nuclear Physics and Oliver Trapp from the Institute of Organic Chemistry at the University of Heidelberg have, for the first time, been able to determine the sense of handedness, or chirality, of a gaseous sample, a chiral epoxide, by directly imaging its molecular structure.

To this effect, Trapp's team of chemists firstly produced a compound with defined handedness by transferring the handedness of a derivative of naturally occurring tartaric acid onto the target molecule dideuterooxirane. Kreckel and his team then carried out their measurements using minuscule quantities of this substance in highly dilute concentrations.

The team at the Max Planck Institute for Nuclear Physics took the electrically neutral molecules and produced ions with a single positive charge by removing a single electron from each molecule. These ions can be boosted to very high speeds in a particle accelerator. The accelerated ions then pass through a very thin diamond foil. In under one femtosecond (one millionth of a billionth of a second), the foil strips the binding electrons from the molecules. All that remains are highly charged atoms which vehemently repel one another. Having lost the electrons that "glue" the molecules together, the fragments now fly apart.

After passing through the foil, the fragments move further apart from one another. However, the atoms retain their relative positions. As the time of flight increases, an ever larger, three-dimensional image of the molecule, retaining the underlying geometry, is obtained. Once it reaches a 3D detector, the image of the molecule has already grown to a few centimetres in size, and the detector records this structure. In order to meet the demanding requirements which apply to measuring chiral molecules, the detector arrangement was optimised to detect up to five fragments at once. The image on the detector shows the absolute configuration which in turn directly reveals the molecule's handedness. The pioneering work for this multiparticle "Coulomb Explosion” detection scheme was carried out at the Weizmann Institute in Israel.

"The way the experiment is set up, it would also permit the investigation of chiral fragments of molecules", explain the researchers. This is because, in the described experiment, a mass-selective filter upstream of the diamond foil selects molecule fragments of a desired mass. The filter can be adjusted such that only the chiral fragment of interest is directed onto the foil and is thus recorded by the detector. It is precisely this combination of mass spectrometry with a Coulomb explosion measurement that the researchers believe will be attractive to future applications with chiral molecules.

In future, the Heidelberg-based researchers are hoping to expand their expertise in detecting the handedness of chiral molecules. They already have their eyes on another method in which the chiral molecules are accumulated in an ion storage device prior to the Coulomb explosion.

Contact

Dr. Holger Kreckel
Max Planck Institute for Nuclear Physics, Heidelberg
Phone: +49 6221 516-517
Email:holger.kreckel@mpi-hd.mpg.de
PD Dr. Bernold Feuerstein
Press Officer
Max Planck Institute for Nuclear Physics, Heidelberg
Phone: +49 6221 516-281
Email:info@mpi-hd.mpg.de
Original publication
Philipp Herwig, Kerstin Zawatzky, Manfred Grieser, Oded Heber, Brandon Jordon-Thaden, Claude Krantz, Oldrich Novotný, Roland Repnow, Volker Schurig, Dirk Schwalm, Zeev Vager, Andreas Wolf, Oliver Trapp, Holger Kreckel
Imaging the absolute configuration of a chiral epoxide in the gas phase
Science, 29 November 2013

Dr. Holger Kreckel | Max-Planck-Institute
Further information:
http://www.mpg.de/7634710/coulomb-explosion-method

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>