Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes on a Rope – UC Researchers Take a Unique Look at the Climbing Abilities of Boa Constrictors

01.12.2010
In the wild, how does a snake climb a vertical surface without slipping? An examination involving boa constrictors is published by University of Cincinnati researchers.

In a unique study involving young boa constrictors, University of Cincinnati researchers put snakes to work on varying diameters and flexibility of vertical rope to examine how they might move around on branches and vines to gather food and escape enemies in their natural habitat.

The findings by Greg Byrnes, a University of Cincinnati postdoctoral fellow in the department of biological sciences, and Bruce C. Jayne, a UC professor of biology, are published in the December issue of The Journal of Experimental Biology.

For many Americans, it was the most dreaded moment in gym class: the challenge to wrap oneself around a vertical rope and climb as high as possible. Some of us couldn’t even get off the floor. But for other animals – even with no arms, no hands, no legs and no feet – that climbing ability is a necessity to survive.

The UC researchers sent the snakes climbing up varying widths and tensions of ropes as they explored snake movement in relation to their musculoskeletal design and variation in their environment.

They found that regardless of diameter or flexibility of the rope, the snakes alternated curving between left and right as they climbed the ropes. On the thicker ropes, they were able to move greater portions of their bodies forward as they climbed. As the ropes became thinner and more flimsy, the snakes used more of their bodies – including their back, sides and belly – to manipulate the rope for climbing.

“Despite the likely physical and energetic challenges, the benefits of the ability to move on narrow and compliant substrates might have large ecological implications for animals,” write the authors. “Arboreal organisms must often feed or hunt in the terminal branch niche, which requires the ability to move safely on narrow and compliant substrates.”

Jayne points out that although the large muscles of boa constrictors make them fairly stocky and heavy compared to other snakes, this anatomy probably increases their strength. All of the snakes gripped the ropes using a concertina mode of locomotion, which is defined by some regions of the body periodically stopping while other regions of the body extend forward. “It turns out boa constrictors are strong enough so that they can support their weight with a modest number of gripping regions,” adds Jayne.

The researchers say their findings are the first study that has explicitly examined the combined effects of diameter and compliance on how an animal gets around. Future research is underway to compare differing muscular anatomies in snakes and relate it to their function in terms of their behavior and their environment.

The research was supported by a grant from the National Science Foundation.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu/news/NR.aspx?id=12822
http://www.uc.edu

Further reports about: Abilities Rope Snakes boa constrictors climbing muscular anatomies vertical rope

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>