Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes on a Rope – UC Researchers Take a Unique Look at the Climbing Abilities of Boa Constrictors

01.12.2010
In the wild, how does a snake climb a vertical surface without slipping? An examination involving boa constrictors is published by University of Cincinnati researchers.

In a unique study involving young boa constrictors, University of Cincinnati researchers put snakes to work on varying diameters and flexibility of vertical rope to examine how they might move around on branches and vines to gather food and escape enemies in their natural habitat.

The findings by Greg Byrnes, a University of Cincinnati postdoctoral fellow in the department of biological sciences, and Bruce C. Jayne, a UC professor of biology, are published in the December issue of The Journal of Experimental Biology.

For many Americans, it was the most dreaded moment in gym class: the challenge to wrap oneself around a vertical rope and climb as high as possible. Some of us couldn’t even get off the floor. But for other animals – even with no arms, no hands, no legs and no feet – that climbing ability is a necessity to survive.

The UC researchers sent the snakes climbing up varying widths and tensions of ropes as they explored snake movement in relation to their musculoskeletal design and variation in their environment.

They found that regardless of diameter or flexibility of the rope, the snakes alternated curving between left and right as they climbed the ropes. On the thicker ropes, they were able to move greater portions of their bodies forward as they climbed. As the ropes became thinner and more flimsy, the snakes used more of their bodies – including their back, sides and belly – to manipulate the rope for climbing.

“Despite the likely physical and energetic challenges, the benefits of the ability to move on narrow and compliant substrates might have large ecological implications for animals,” write the authors. “Arboreal organisms must often feed or hunt in the terminal branch niche, which requires the ability to move safely on narrow and compliant substrates.”

Jayne points out that although the large muscles of boa constrictors make them fairly stocky and heavy compared to other snakes, this anatomy probably increases their strength. All of the snakes gripped the ropes using a concertina mode of locomotion, which is defined by some regions of the body periodically stopping while other regions of the body extend forward. “It turns out boa constrictors are strong enough so that they can support their weight with a modest number of gripping regions,” adds Jayne.

The researchers say their findings are the first study that has explicitly examined the combined effects of diameter and compliance on how an animal gets around. Future research is underway to compare differing muscular anatomies in snakes and relate it to their function in terms of their behavior and their environment.

The research was supported by a grant from the National Science Foundation.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu/news/NR.aspx?id=12822
http://www.uc.edu

Further reports about: Abilities Rope Snakes boa constrictors climbing muscular anatomies vertical rope

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>