Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian scientists link unusual fish larva to new species of sea bass from Curacao

14.05.2014

'Oh, the mother and child reunion is only a moment away,' -- Paul Simon

Identifying larval stages of marine fishes in the open ocean is difficult because the young fishes often bear little or no resemblance to the adults they will become. Confronted with a perplexing fish larva collected in the Florida Straits, Smithsonian scientists turned to DNA barcoding, which yielded an unexpected discovery—a match between the mysterious fish larva and adults of a new species of sea bass discovered off the coast of Curacao. The team's research is published in the May 13 issue of PLOS ONE.


The larva at the center of this study. The scientists recognized it as a member of the sea bass family Serranidae but were intrigued by its seven very elongate dorsal-fin spines.

Credit: Smithsonian


An adult of the new species of sea bass, Liopropoma olneyi, recently discovered in the deep reefs of Curacao. Once discovered, it simultaneously solved the identification mystery of a fish larva found in the Florida Straits.

Credit: Barry Brown, Substation Curacao

Most marine fishes have a pelagic larval stage that drifts in the surface or near-surface currents of the ocean―an environment very different from the one they inhabit as adults. Two different environments often require two different body shapes and appearances, resulting in larvae that look very different from the adults of the same species.

The larva at the center of this study first came to the team's attention from a photograph without identification in another research paper. The scientists recognized it as a member of the sea bass family Serranidae but were intrigued by its seven very elongate dorsal-fin spines.

"This feature isn't known in any Atlantic sea bass larvae, but it is similar to one species of Indo-Pacific sea bass," said David Johnson, a zoologist at Smithsonian's National Museum of Natural History. "We initially thought the larva must have been caught in the Indo-Pacific Ocean, but we were wrong." The fish larva in the photo was in fact caught in the Florida Straits.

The team obtained the preserved larval fish for further study and were met with an immediate mystery—a DNA sequence from the specimen did not match any known fish species. That, along with unique morphological features, led the scientists to begin describing the larva as a new species despite the absence of adults.

Meanwhile, in a separate project, Smithsonian scientists were using a manned submersible to explore the deep-reef fish species off of Curacao in the southern Caribbean. Among the fish collected were "golden basses," which the team identified as Liopropoma aberrans based on general color pattern; however, genetic analyses revealed more than one species. Combining this new genetic information with available DNA barcoding data for all western Atlantic sea bass specimens yielded an unexpected discovery: The larva from the Florida Straits is the pelagic stage of a cryptic new species of Liopropoma from southern Caribbean deep reefs. The mystery was solved, and a new species of sea bass—now known as Liopropoma olneyi—was discovered.

The team named the new species in honor of a deceased colleague, John E. Olney, who studied and taught courses about marine fish larvae.

"This was one of those cases where all the stars were properly aligned," said Carole Baldwin, a zoologist at Smithsonian's National Museum of Natural History. "We discover a new species of sea bass on Curacao deep reefs that just happens to be the missing adult stage of a larval fish from Florida, which we only knew existed because it was included as 'decoration' in a scientific publication. What a great little fish story!"

Deep reefs, which extend from depths of 150 to more than 1,000 feet, are underexplored ecosystems worldwide. "You can't access them using traditional SCUBA gear, and if you're paying a lot of money for a deep-diving submersible that goes to Titanic depths, you're not stopping at 300 or 800 feet to look for fishes, said Baldwin. "Science has largely missed the deep-reef zone, and it appears to be home to a lot of life that we didn't know about."

Researchers are now able to study deep reefs in the southern Caribbean because of the availability of the Curasub submersible, a privately owned, manned submersible capable of descending to 1,000 feet. The work off Curacao resulting in the discovery of L. olneyi is part of the Smithsonian's Deep Reef Observation Project.

"We are only beginning to understand the phenomenal diversity of life that inhabits deep Caribbean reefs," said Baldwin.

John Gibbons | Eurek Alert!
Further information:
http://www.si.edu

Further reports about: Caribbean DNA Deep Indo-Pacific Liopropoma olneyi Smithsonian Straits barcoding larva larval species

More articles from Life Sciences:

nachricht Getting a grip on slippery cell membranes
28.06.2016 | Worcester Polytechnic Institute

nachricht Unexpected flexibility found in odorant molecules
27.06.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Scientists explain unusual and effective features in perovskite

28.06.2016 | Physics and Astronomy

ChemCam findings hint at oxygen-rich past on Mars

28.06.2016 | Earth Sciences

Previously unknown global ecological disaster discovered

28.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>