Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian scientists link unusual fish larva to new species of sea bass from Curacao

14.05.2014

'Oh, the mother and child reunion is only a moment away,' -- Paul Simon

Identifying larval stages of marine fishes in the open ocean is difficult because the young fishes often bear little or no resemblance to the adults they will become. Confronted with a perplexing fish larva collected in the Florida Straits, Smithsonian scientists turned to DNA barcoding, which yielded an unexpected discovery—a match between the mysterious fish larva and adults of a new species of sea bass discovered off the coast of Curacao. The team's research is published in the May 13 issue of PLOS ONE.


The larva at the center of this study. The scientists recognized it as a member of the sea bass family Serranidae but were intrigued by its seven very elongate dorsal-fin spines.

Credit: Smithsonian


An adult of the new species of sea bass, Liopropoma olneyi, recently discovered in the deep reefs of Curacao. Once discovered, it simultaneously solved the identification mystery of a fish larva found in the Florida Straits.

Credit: Barry Brown, Substation Curacao

Most marine fishes have a pelagic larval stage that drifts in the surface or near-surface currents of the ocean―an environment very different from the one they inhabit as adults. Two different environments often require two different body shapes and appearances, resulting in larvae that look very different from the adults of the same species.

The larva at the center of this study first came to the team's attention from a photograph without identification in another research paper. The scientists recognized it as a member of the sea bass family Serranidae but were intrigued by its seven very elongate dorsal-fin spines.

"This feature isn't known in any Atlantic sea bass larvae, but it is similar to one species of Indo-Pacific sea bass," said David Johnson, a zoologist at Smithsonian's National Museum of Natural History. "We initially thought the larva must have been caught in the Indo-Pacific Ocean, but we were wrong." The fish larva in the photo was in fact caught in the Florida Straits.

The team obtained the preserved larval fish for further study and were met with an immediate mystery—a DNA sequence from the specimen did not match any known fish species. That, along with unique morphological features, led the scientists to begin describing the larva as a new species despite the absence of adults.

Meanwhile, in a separate project, Smithsonian scientists were using a manned submersible to explore the deep-reef fish species off of Curacao in the southern Caribbean. Among the fish collected were "golden basses," which the team identified as Liopropoma aberrans based on general color pattern; however, genetic analyses revealed more than one species. Combining this new genetic information with available DNA barcoding data for all western Atlantic sea bass specimens yielded an unexpected discovery: The larva from the Florida Straits is the pelagic stage of a cryptic new species of Liopropoma from southern Caribbean deep reefs. The mystery was solved, and a new species of sea bass—now known as Liopropoma olneyi—was discovered.

The team named the new species in honor of a deceased colleague, John E. Olney, who studied and taught courses about marine fish larvae.

"This was one of those cases where all the stars were properly aligned," said Carole Baldwin, a zoologist at Smithsonian's National Museum of Natural History. "We discover a new species of sea bass on Curacao deep reefs that just happens to be the missing adult stage of a larval fish from Florida, which we only knew existed because it was included as 'decoration' in a scientific publication. What a great little fish story!"

Deep reefs, which extend from depths of 150 to more than 1,000 feet, are underexplored ecosystems worldwide. "You can't access them using traditional SCUBA gear, and if you're paying a lot of money for a deep-diving submersible that goes to Titanic depths, you're not stopping at 300 or 800 feet to look for fishes, said Baldwin. "Science has largely missed the deep-reef zone, and it appears to be home to a lot of life that we didn't know about."

Researchers are now able to study deep reefs in the southern Caribbean because of the availability of the Curasub submersible, a privately owned, manned submersible capable of descending to 1,000 feet. The work off Curacao resulting in the discovery of L. olneyi is part of the Smithsonian's Deep Reef Observation Project.

"We are only beginning to understand the phenomenal diversity of life that inhabits deep Caribbean reefs," said Baldwin.

John Gibbons | Eurek Alert!
Further information:
http://www.si.edu

Further reports about: Caribbean DNA Deep Indo-Pacific Liopropoma olneyi Smithsonian Straits barcoding larva larval species

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>