Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smithsonian scientists discover butterfly-like fossil insect in the deep Mesozoic


Study reveals rare example of convergent evolution, plant-insect coevolution and evidence of an increasingly complex web of life from 165 to 125 million years ago

Large butterfly-like insects known as Kalligrammatid lacewings, which fluttered through Eurasian fern- and cycad-filled woodland during the Mesozoic Era, have been extinct for more than 120 million years. But with new fossil analyses, scientists at the Smithsonian's National Museum of Natural History have discovered that these ancient lacewings were surprisingly similar to modern butterflies, which did not appear on Earth for another 50 million years.

Oregramma illecebrosa

Credit: Conrad Labandeira (top) and Jorge Santiago-Blay (bottom), Smithsonian.

Through taxonomic, anatomical and geochemical studies, scientists led by Smithsonian paleoecologist Conrad Labandeira revealed that Kalligrammatid lacewings likely served as important pollinators during mid-Mesozoic times, using mouthparts that were strikingly similar to the elongated, tubular structures that modern butterflies have to sip nectar-like fluids from flowering plants. What's more, their wings bore eyespot patterns that closely resemble those found on some butterflies today, which may have helped to distract or deter potential predators.

Labandeira and his colleagues--an international team of geochemists, botanists, entomologists and paleobiologists--reported their findings Feb. 3, in the journal Proceedings of the Royal Society B. Their findings represent a striking example of convergent evolution between these two unrelated lineages, in which the two distinct groups of organisms evolve similar traits as they interact to similar features in their environments.

Paleobiologists have known for more than 100 years that Kalligrammatid lacewings lived in Eurasia during the Mesozoic. But the insects have remained largely enigmatic until recent discoveries of well-preserved fossils from two sites in northeastern China. Thanks to extensive lakes that limited oxygen exposure in these areas during mid-Jurassic through early Cretaceous time, paleontologists have been able to recover exquisitely preserved fossils that retain much of their original structure.

Labandeira, who is the museum's curator of fossil arthropods, began the analysis of Kalligrammatid fossils from these sites by producing precise drawings of specimens using a camera lucida. This projection device lets artists trace fine features, such as the head and mouthparts of insects, while viewing them under a microscope. Labandeira's drawings depicted insects with surprisingly long, tubular proboscises.

"Various features of the mouthparts all indicate that these things were sucking fluids from the reproductive structures of gymnosperm plants," Labandeira said. That idea was supported by an analysis of a bit of material lingering within the food tube of one fossil, which was found to contain only carbon. Had the insect been feeding on blood, its final meal would have left traces of iron in the food tube as well.

Although the lacewings' mouthparts were strikingly similar to those of modern butterflies, there were no nectar-producing flowers in these Mesozoic forests. Paleobotanist David Dilcher of Indiana University, a member of the research team, said that like many Mesozoic insects, Kalligrammatids would have fed on sugary pollen drops produced by seed plants, transferring pollen between male and female plant parts as they did so.

A now-extinct group of plants called bennettitaleans, whose deep, tubular reproductive structures may have been accessed by kalligrammatid proboscises, likely was the primary food source for the co-occurring lacewings. But variations in proboscis shapes among the fossils suggest the insects were associated with a wide variety of host plants.

Careful observation of the fossils also revealed the presence of scales on wings and mouthparts, which, like the scales on modern butterflies, likely contained pigments that gave the insects vibrant colors. Based on similarities between Kalligrammatid wing patterns and those found on modern nymphalid butterflies (a group that includes red admirals and painted ladies), Labandeira said Kalligrammatids might have been decorated with red or orange hues.

That discovery prompted the team to examine the chemical composition of various regions of the Kalligrammatid's patterned wings, particularly the wing eyespots, an eye-like marking that might have deterred potential predators in Mesozoic woodlands. In modern butterflies with eyespots, the dark center of the mark is formed by a concentration of the pigment melanin. A sensitive chemical analysis indicated that the Kalligrammatids, too, had melanin at the center of their eyespots.

"That, in turn, suggests that the two groups of insects share a genetic program for eyespot production," Labandeira said. "The last common ancestor of these insects lived about 320 million years ago, deep in the Paleozoic. So we think this must be a developmental mechanism that goes all the way back to the origins of winged insects."

Taken together, the team's findings highlight two ways in which relationships between plant-hosts and their pollinator species drove evolution, Dilcher said. "Here, we've got coevolution of plants with these animals due to their feeding behavior, and we've got coevolution of the lacewings and their predators. It's building a web of life that is more and more complex."

Media Contact

Ryan Lavery

Ryan Lavery | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>