Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian scientists discover butterfly-like fossil insect in the deep Mesozoic

04.02.2016

Study reveals rare example of convergent evolution, plant-insect coevolution and evidence of an increasingly complex web of life from 165 to 125 million years ago

Large butterfly-like insects known as Kalligrammatid lacewings, which fluttered through Eurasian fern- and cycad-filled woodland during the Mesozoic Era, have been extinct for more than 120 million years. But with new fossil analyses, scientists at the Smithsonian's National Museum of Natural History have discovered that these ancient lacewings were surprisingly similar to modern butterflies, which did not appear on Earth for another 50 million years.


Oregramma illecebrosa

Credit: Conrad Labandeira (top) and Jorge Santiago-Blay (bottom), Smithsonian.

Through taxonomic, anatomical and geochemical studies, scientists led by Smithsonian paleoecologist Conrad Labandeira revealed that Kalligrammatid lacewings likely served as important pollinators during mid-Mesozoic times, using mouthparts that were strikingly similar to the elongated, tubular structures that modern butterflies have to sip nectar-like fluids from flowering plants. What's more, their wings bore eyespot patterns that closely resemble those found on some butterflies today, which may have helped to distract or deter potential predators.

Labandeira and his colleagues--an international team of geochemists, botanists, entomologists and paleobiologists--reported their findings Feb. 3, in the journal Proceedings of the Royal Society B. Their findings represent a striking example of convergent evolution between these two unrelated lineages, in which the two distinct groups of organisms evolve similar traits as they interact to similar features in their environments.

Paleobiologists have known for more than 100 years that Kalligrammatid lacewings lived in Eurasia during the Mesozoic. But the insects have remained largely enigmatic until recent discoveries of well-preserved fossils from two sites in northeastern China. Thanks to extensive lakes that limited oxygen exposure in these areas during mid-Jurassic through early Cretaceous time, paleontologists have been able to recover exquisitely preserved fossils that retain much of their original structure.

Labandeira, who is the museum's curator of fossil arthropods, began the analysis of Kalligrammatid fossils from these sites by producing precise drawings of specimens using a camera lucida. This projection device lets artists trace fine features, such as the head and mouthparts of insects, while viewing them under a microscope. Labandeira's drawings depicted insects with surprisingly long, tubular proboscises.

"Various features of the mouthparts all indicate that these things were sucking fluids from the reproductive structures of gymnosperm plants," Labandeira said. That idea was supported by an analysis of a bit of material lingering within the food tube of one fossil, which was found to contain only carbon. Had the insect been feeding on blood, its final meal would have left traces of iron in the food tube as well.

Although the lacewings' mouthparts were strikingly similar to those of modern butterflies, there were no nectar-producing flowers in these Mesozoic forests. Paleobotanist David Dilcher of Indiana University, a member of the research team, said that like many Mesozoic insects, Kalligrammatids would have fed on sugary pollen drops produced by seed plants, transferring pollen between male and female plant parts as they did so.

A now-extinct group of plants called bennettitaleans, whose deep, tubular reproductive structures may have been accessed by kalligrammatid proboscises, likely was the primary food source for the co-occurring lacewings. But variations in proboscis shapes among the fossils suggest the insects were associated with a wide variety of host plants.

Careful observation of the fossils also revealed the presence of scales on wings and mouthparts, which, like the scales on modern butterflies, likely contained pigments that gave the insects vibrant colors. Based on similarities between Kalligrammatid wing patterns and those found on modern nymphalid butterflies (a group that includes red admirals and painted ladies), Labandeira said Kalligrammatids might have been decorated with red or orange hues.

That discovery prompted the team to examine the chemical composition of various regions of the Kalligrammatid's patterned wings, particularly the wing eyespots, an eye-like marking that might have deterred potential predators in Mesozoic woodlands. In modern butterflies with eyespots, the dark center of the mark is formed by a concentration of the pigment melanin. A sensitive chemical analysis indicated that the Kalligrammatids, too, had melanin at the center of their eyespots.

"That, in turn, suggests that the two groups of insects share a genetic program for eyespot production," Labandeira said. "The last common ancestor of these insects lived about 320 million years ago, deep in the Paleozoic. So we think this must be a developmental mechanism that goes all the way back to the origins of winged insects."

Taken together, the team's findings highlight two ways in which relationships between plant-hosts and their pollinator species drove evolution, Dilcher said. "Here, we've got coevolution of plants with these animals due to their feeding behavior, and we've got coevolution of the lacewings and their predators. It's building a web of life that is more and more complex."

Media Contact

Ryan Lavery
laveryr@si.edu
202-633-2950

http://www.si.edu

Ryan Lavery | EurekAlert!

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>