Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian researchers find differences between Galapagos and mainland frigatebirds

29.09.2010
Although the magnificent frigatebird may be the least likely animal on the Galapagos Islands to be unique to the area, it turns out the Galapagos population of this tropical seabird may be its own genetically distinct species warranting a new conservation status, according to a paper by researchers at the Smithsonian Conservation Biology Institute, the Smithsonian's National Museum of Natural History and the University of Missouri-St. Louis published last week in the scientific journal Proceedings of the Royal Society B.

The Galapagos Islands, which once served as a scientific laboratory for Charles Darwin, boast a number of unique plant and animal species, from tortoises to iguanas to penguins. Magnificent frigatebirds, however, can fly hundreds of kilometers across open ocean, suggesting that their gene flow should be widespread and their genetic make-up should be identical to those of the magnificent frigatebirds on the mainland coast of the Americas.

Even Darwin predicted that most Galapagos seabirds would not be very different from their mainland counterparts. But researchers at SCBI conducted three different kinds of genetics tests and all yielded the same result—the Galapagos seabirds have been genetically different from the magnificent frigatebirds elsewhere for more than half a million years.

"This was such a surprise," said Frank Hailer, a postdoctoral research associate at SCBI and lead author of the paper. "It's a great testimony to just how unique the fauna and flora of the Galapagos are. Even something that is so well-adapted to flying over open oceans is isolated there."

Scientists began the research to determine whether the magnificent frigatebird on the Galapagos was more similar genetically to the magnificent frigatebirds on the Caribbean side or the Pacific side of the islands. Using frigatebird samples from Betty Anne Schreiber at the National Museum of Natural History, Iris Levin and Patricia Parker at the University of Missouri-St. Louis and those they collected in the field, SCBI researchers determined that the Galapagos version differ not only genetically, but also morphologically.

Now scientists are left with a number of questions: Are the genetics of the magnificent frigatebird on the Galapagos different enough to classify it as a distinct species? And what, exactly, accounts for the genetic and morphological differences when the seabirds can travel far and wide and therefore should not be isolated to one area to reproduce? SCBI and National Museum of Natural History researchers plan to collaborate with others in the field to find the answers.

What is clear, however, is that this small population of genetically unique magnificent frigatebirds is a vulnerable population. Any catastrophic event or threats by humans could wipe out the approximate 2,000 magnificent frigatebirds that nest on the Galapagos Islands.

"The magnificent frigatebirds on the Galapagos are a unique evolutionarily significant unit, and if the Galapagos population did go extinct, the area will not likely be recolonized rapidly by mainland birds," said Robert Fleischer, head of SCBI's Center for Conservation and Evolutionary Genetics and one of the paper's co-authors. "This emphasizes the importance of protecting this small population of birds there."

Magnificent frigatebirds are currently considered of least concern by the International Union for Conservation of Nature, but the Proceedings of the Royal Society B paper recommends that, because of the genetic uniqueness of those on the Galapagos, this status be revisited.

Authors of the paper: Frank Hailer, Smithsonian's National Zoo; E. A. Schreiber, Smithsonian's National Museum of Natural History; Joshua Miller, Smithsonian's National Zoo; Iris Levin, University of Missouri-St. Louis; Patricia Parker, University of Missouri-St. Louis; Terry Chesser, U.S. Geological Survey and Smithsonian's National Museum of Natural History; and Robert Fleischer, Smithsonian's National Zoo.

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>