Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian researchers find differences between Galapagos and mainland frigatebirds

29.09.2010
Although the magnificent frigatebird may be the least likely animal on the Galapagos Islands to be unique to the area, it turns out the Galapagos population of this tropical seabird may be its own genetically distinct species warranting a new conservation status, according to a paper by researchers at the Smithsonian Conservation Biology Institute, the Smithsonian's National Museum of Natural History and the University of Missouri-St. Louis published last week in the scientific journal Proceedings of the Royal Society B.

The Galapagos Islands, which once served as a scientific laboratory for Charles Darwin, boast a number of unique plant and animal species, from tortoises to iguanas to penguins. Magnificent frigatebirds, however, can fly hundreds of kilometers across open ocean, suggesting that their gene flow should be widespread and their genetic make-up should be identical to those of the magnificent frigatebirds on the mainland coast of the Americas.

Even Darwin predicted that most Galapagos seabirds would not be very different from their mainland counterparts. But researchers at SCBI conducted three different kinds of genetics tests and all yielded the same result—the Galapagos seabirds have been genetically different from the magnificent frigatebirds elsewhere for more than half a million years.

"This was such a surprise," said Frank Hailer, a postdoctoral research associate at SCBI and lead author of the paper. "It's a great testimony to just how unique the fauna and flora of the Galapagos are. Even something that is so well-adapted to flying over open oceans is isolated there."

Scientists began the research to determine whether the magnificent frigatebird on the Galapagos was more similar genetically to the magnificent frigatebirds on the Caribbean side or the Pacific side of the islands. Using frigatebird samples from Betty Anne Schreiber at the National Museum of Natural History, Iris Levin and Patricia Parker at the University of Missouri-St. Louis and those they collected in the field, SCBI researchers determined that the Galapagos version differ not only genetically, but also morphologically.

Now scientists are left with a number of questions: Are the genetics of the magnificent frigatebird on the Galapagos different enough to classify it as a distinct species? And what, exactly, accounts for the genetic and morphological differences when the seabirds can travel far and wide and therefore should not be isolated to one area to reproduce? SCBI and National Museum of Natural History researchers plan to collaborate with others in the field to find the answers.

What is clear, however, is that this small population of genetically unique magnificent frigatebirds is a vulnerable population. Any catastrophic event or threats by humans could wipe out the approximate 2,000 magnificent frigatebirds that nest on the Galapagos Islands.

"The magnificent frigatebirds on the Galapagos are a unique evolutionarily significant unit, and if the Galapagos population did go extinct, the area will not likely be recolonized rapidly by mainland birds," said Robert Fleischer, head of SCBI's Center for Conservation and Evolutionary Genetics and one of the paper's co-authors. "This emphasizes the importance of protecting this small population of birds there."

Magnificent frigatebirds are currently considered of least concern by the International Union for Conservation of Nature, but the Proceedings of the Royal Society B paper recommends that, because of the genetic uniqueness of those on the Galapagos, this status be revisited.

Authors of the paper: Frank Hailer, Smithsonian's National Zoo; E. A. Schreiber, Smithsonian's National Museum of Natural History; Joshua Miller, Smithsonian's National Zoo; Iris Levin, University of Missouri-St. Louis; Patricia Parker, University of Missouri-St. Louis; Terry Chesser, U.S. Geological Survey and Smithsonian's National Museum of Natural History; and Robert Fleischer, Smithsonian's National Zoo.

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>