Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smithsonian finds color patterns in fish larvae may reveal relationships among species

Similarities in how different organisms look can indicate a close evolutionary relationship.

Conversely, great differences in appearance can suggest a very distant relationship, as in many adult marine fish species. For the first time, however, a Smithsonian scientist has found that color patterns of different fish species in the larval stage can be very similar, revealing a closer evolutionary relationship than their adult forms would suggest. The research is published in the July issue of the Zoological Journal of the Linnean Society.

While the adult forms of these five labriformes species look different from one another as adults, here in their larval stage they are all very similar.

A: Halichoeres bivittatus
B: Halichoeres garnoti
C: Halichoeres maculipinna
D: Halichoeres poeyi
E: Thalassoma bifasciatum

Credit: Photos A−C by Julie Mounts and David Smith; D, E by Lee Weigt and Carole Baldwin.

Many marine fish species spend their larval stage near the ocean's surface¯an environment completely different than the one they are in as adults. Two different environments often require two different body shapes and appearances, resulting in fish in their larval stage that bear little to no resemblance to their adult counterparts.

Carole Baldwin, a zoologist at the Smithsonian's National Museum of Natural History, examined more than 200 species of marine fishes in their larval stage, primarily from the western Caribbean. She found that in many cases larval color patterns of different species were very similar, contributing evidence to a phylogenic relationship.

"Biologists, artists and tropical fish aquarists have described, illustrated or photographed color patterns in adult marine fishes for centuries, but color patterns in marine fish larvae have largely been neglected," said Baldwin. "Yet the larval stages of many marine fishes have subtle to striking, ephemeral color patterns that can potentially tell us a lot about a species' place on the taxonomic family tree."

Adult mullets, for instance, are very different in appearance than adult flying fish, yet when Baldwin examined these fishes in the larval stage she noticed that they share a unique transformation of color pattern that supports the idea that they could be closely related. Larvae of some species in the order Tetraodontiforme, like the pufferfish, and those in the order Lophiiforme, like the anglerfish, are strikingly similar in having the trunks of their bodies enclosed in an inflated yellow sac. Their appearance as adults, however, would not hint at a close relationship.

"More investigation of larval color patterns in marine fish is needed to fully assess their value in phylogenic reconstruction," said Baldwin. "But the evidence I've found so far is promising that this will be an important taxonomic resource in the future."

Color information on many more marine fish larvae is needed to fully use this new suite of evolutionary information, and Baldwin will encourage colleagues to obtain color photographs of larvae when possible. And studies on the formation of pigment, such as those conducted on the model freshwater zebrafish (Danio species), are needed.

John Gibbons | EurekAlert!
Further information:

Further reports about: Smithsonian fish larvae fish species marine fish marine fish species

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>