Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian finds color patterns in fish larvae may reveal relationships among species

25.07.2013
Similarities in how different organisms look can indicate a close evolutionary relationship.

Conversely, great differences in appearance can suggest a very distant relationship, as in many adult marine fish species. For the first time, however, a Smithsonian scientist has found that color patterns of different fish species in the larval stage can be very similar, revealing a closer evolutionary relationship than their adult forms would suggest. The research is published in the July issue of the Zoological Journal of the Linnean Society.


While the adult forms of these five labriformes species look different from one another as adults, here in their larval stage they are all very similar.

A: Halichoeres bivittatus
B: Halichoeres garnoti
C: Halichoeres maculipinna
D: Halichoeres poeyi
E: Thalassoma bifasciatum

Credit: Photos A−C by Julie Mounts and David Smith; D, E by Lee Weigt and Carole Baldwin.

Many marine fish species spend their larval stage near the ocean's surface¯an environment completely different than the one they are in as adults. Two different environments often require two different body shapes and appearances, resulting in fish in their larval stage that bear little to no resemblance to their adult counterparts.

Carole Baldwin, a zoologist at the Smithsonian's National Museum of Natural History, examined more than 200 species of marine fishes in their larval stage, primarily from the western Caribbean. She found that in many cases larval color patterns of different species were very similar, contributing evidence to a phylogenic relationship.

"Biologists, artists and tropical fish aquarists have described, illustrated or photographed color patterns in adult marine fishes for centuries, but color patterns in marine fish larvae have largely been neglected," said Baldwin. "Yet the larval stages of many marine fishes have subtle to striking, ephemeral color patterns that can potentially tell us a lot about a species' place on the taxonomic family tree."

Adult mullets, for instance, are very different in appearance than adult flying fish, yet when Baldwin examined these fishes in the larval stage she noticed that they share a unique transformation of color pattern that supports the idea that they could be closely related. Larvae of some species in the order Tetraodontiforme, like the pufferfish, and those in the order Lophiiforme, like the anglerfish, are strikingly similar in having the trunks of their bodies enclosed in an inflated yellow sac. Their appearance as adults, however, would not hint at a close relationship.

"More investigation of larval color patterns in marine fish is needed to fully assess their value in phylogenic reconstruction," said Baldwin. "But the evidence I've found so far is promising that this will be an important taxonomic resource in the future."

Color information on many more marine fish larvae is needed to fully use this new suite of evolutionary information, and Baldwin will encourage colleagues to obtain color photographs of larvae when possible. And studies on the formation of pigment, such as those conducted on the model freshwater zebrafish (Danio species), are needed.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

Further reports about: Smithsonian fish larvae fish species marine fish marine fish species

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>