Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smithsonian conservation team develops new technique for dating silk

Strand for strand no fabric can compare to the luxurious feel, luminosity and sheen of pure silk. Since millennia, the Chinese have been unraveling the cocoons of the silk worm (Bombyx mori) and weaving the fibers into sumptuous garments, hangings, carpets, tapestries and even artworks of painted silk.

Now, for the first time, scientists at the Smithsonian's Museum Conservation Institute have developed a fast and reliable method to date silk. This new technique, which is based on capillary electrophoresis mass spectrometry, has great potential to improve the authentication and dating of the priceless silk artifacts held in museum and other collections around the world.

The new method uses the natural deterioration of the silk's amino acids--a process known as racemization--to determine its age. As time goes by, the abundance of the L-amino acids used in the creation of the silk protein decreases while the abundance of D-amino acids associated with the silk's deterioration increases. Measuring this ever-changing ratio between the two types of amino acids can reveal the age of a silk sample.

Archaeologists and forensic anthropologists have used this process for decades to date bone, shells and teeth, but the techniques used required sizeable samples, which for precious silk objects are almost impossible to obtain.

"Many things an animal makes are protein based, such as skin and hair. Proteins are made of amino acids," explains Smithsonian research scientist Mehdi Moini, chief author of a recent paper in the journal Analytical Chemistry announcing the new dating method.

"Living creatures build protein by using specific amino acids known commonly as left-handed [L] amino acids. Once an animal dies it can no longer replace the tissues containing left-handed amino acids and the clock starts. As L- changes to D-amino acids [right handed], the protein begins to degrade," Moini explains.

Measuring this ever-changing ratio between left-handed and right-handed (D) amino acids can be used as a scientific clock by which a silk's age can be estimated. In controlled environments such as museum storage, the decomposition process of silk is relatively uniform, rendering D/L measurement more reliable.

The Smithsonian Museum Conservation Institute team used fiber samples taken from a series of well-dated silk artifacts to create a chart of left-hand and right-handed amino-acid calibration ratios against which other silks fabrics can be dated.

Those items included new silk fibers; a silk textile from the Warring States Period, China (475-221 B.C.) from the Metropolitan Museum of Art in New York City; a silk tapestry (1540s) from the Fontainebleau Series, Kunsthistorisches Museum, Vienna, Austria; a silk textile from Istanbul (1551-1599) from the Textile Museum, Washington, D.C.; a man's suit coat (1740) from the Museum of the City of New York; and a silk Mexican War flag (1845-1846) from the Smithsonian's National Museum of American History.

Previously, the scientists write, dating silk has been largely been a speculative endeavor that has mostly relied on the historical knowledge of a silk piece, as well as its physical and chemical characteristics.

The new technique takes about 20 minutes, and requires the destruction of about 100 microgram of silk fiber, making it preferable over C14 (carbon 14) dating, which requires the destruction of so much material that it is prohibitive for most fine silk items.

The article "Dating Silk by Capillary Electrophoresis Mass Spectrometry" appeared in the scientific journal Analytical Chemistry. It was authored by Mehdi Moini; Mary Ballard, Smithsonian senior textile conservator; and Museum Conservation Institute intern Kathryn Klauenberg.

John Gibbons | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>