Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smelling the Scenery in Stereo

Desert ants perceive odour maps in stereo and use this information for navigation

Scientists of the Max Planck Institute for Chemical Ecology in Jena have investigated another navigational skill of desert ants. These ants are already well-known for their remarkable visual orientation: they use a sun compass along with a step counter and visible landmarks to locate their nest after foraging for food.

After the research team from Jena recently discovered that these ants also use olfactory cues to pinpoint their nests, they conducted new experiments: they revealed that the animals can not only locate an odour source, but also use the distribution of different odours in the vicinity of their nests in a map-like manner. The scientists found that the ants need both their antennae for this odour-guided navigation: they smell the scenery in stereo. (Animal Behaviour, online first, doi:10.1016/j.anbehav.2010.01.011)

The desert ant Cataglyphis fortis is an insect native to the inhospitable salt-pans of Tunisia. To pinpoint the nest - a tiny hole in the desert ground - after foraging for food, Cataglyphis combines several navigation systems: a sun compass, a path integrator (the ant literally counts its steps), and visual recognition of landmarks. Recently, Kathrin Steck, Bill Hansson and Markus Knaden, neuroethologists at the Max Planck Institute for Chemical Ecology in Jena, discovered that local odours also play an important role in the insect's orientation (Frontiers in Zoology, 2009, Vol. 6 No. 5): ants learn to associate a smell with their nest and distinguish this smell from others. But the researchers wanted to know if the insects are also able to recognize odour patterns that emerge, when several odour sources are located at different positions around the nest. And if so, they asked, do ants need both their antennae like stereo receivers just as we employ two eyes and two ears for spatial perception?

"We conducted two key experiments," says Kathrin Steck, PhD student at the institute. "First we marked four odour sources surrounding the nest entrance with the substances methyl salicylate, decanal, nonanal, and indole, and got the ants trained on them. If these four odour points were shifted away from the nest in the original arrangement, the ants repeatedly headed for the odours, even though the nest wasn't there anymore. If we rearranged the odour sources relative to each other, the ants were completely confused." Therefore the researchers assumed that ants do not "think" one-dimensionally - i.e. they do not associate the nest with only one smell - but multi-dimensionally, i.e., they relate an odour landscape to their nest. The odour landscape comprising the four substances was monitored with the help of a special measuring technique: the scientists used a specific photoionisation detector to determine the distribution of the odour substances in space and time.

Spatial perception can easily be acquired if two separate sensory organs are available, such as two eyes for visual orientation. In the case of the ants, this would be their two antennae. "With this assumption, the second key experiment seemed obvious: We tested ants that only had one antenna," Markus Knaden, the leader of the study, explains. In fact, ants with only one sensory device were unable to make use of the odour landscape for navigation.

Stereo smelling in animals is not new - rats and humans are thought to have this ability as well. This new study shows that ants smell in stereo, but not only that: "In our experiments we demonstrated that ants successfully use stereo smelling for navigation in the desert," says Bill Hansson, director at the institute. [JWK, AO]

Original Publication:
Kathrin Steck, Markus Knaden, Bill S. Hansson: Do desert ants smell the scenery in stereo? Animal Behaviour, online first (doi:10.1016/j.anbehav.2010.01.011).
Prof. Dr. Bill S. Hansson, MPI for Chemical Ecology, Tel.: 03641 / 57-1400,
Dr. Markus Knaden, MPI for Chemical Ecology, Tel.: 03641 / 57-1421,

Dipl. Biol. Kathrin Steck; MPI for Chemical Ecology, Tel.: 03641 / 57-1466,

Picture Material:
Angela Overmeyer M.A., MPI for Chemical Ecology, Tel.: 03641 / 57-2110,

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>