Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smalleye pigmy sharks' bellies shine

Smalleye pigmy sharks glow for camouflage

Some sharks deserve a blood curdling reputation, but not the diminutive smalleye pigmy shark (Squaliolus aliae). Reaching a maximum length of only 22cm, the tiny animals are more likely to be on someone else's menu. Silhouetted against weak light penetrating from the surface, the tiny sharks should be most at risk from predators approaching from below.

However, Julien Claes from Université catholique de Louvain, Belgium, explains that the minute sharks have evolved a handy trick. Their undersides are covered in tiny light-emitting photophores that probably fill in their telltale silhouettes. Adding that the distantly related velvet belly lantern sharks have adopted this luminous tactic for camouflage and communication, Claes and colleague Jérôme Mallefet were curious to discover whether pigmy sharks had acquired bioluminescence from the same origin, or developed the ability independently. The duo publish their discoveries that pigmy sharks glow for camouflage and that they probably share an ancestor in common with lantern sharks because they use similar mechanisms to regulate their glows in The Journal of Experimental Biology at

Teaming up with Hsuan-Ching Ho from the National Dong Hwa University, Taiwan, the scientists went trawling for smalleye pigmy sharks off the Taiwanese coast. Back in the lab, the team collected samples of the fish's skin, injected substances – ranging from neurotransmitters to hormones, which are known to regulate a wide range of biological processes – and waited to see whether the skin began glowing. Recording the time when the skin started producing light, and the maximum intensity and duration of light production, the team discovered that the hormone melatonin – which stimulates light production in the lantern sharks – made the smalleye pigmy shark's skin glow, while the neurotransmitters – which regulate light production in deep-sea bony fish – had no effect at all.

However, when the team applied prolactin to the glowing skin, they were in for a surprise: the glow faded. Instead of stimulating 30-min-long bursts of glowing light – as it does for lantern sharks – prolactin dimmed the sharks' glow, which, according to Claes, is intriguing from two perspectives.

He explains that in addition to using continual bioluminescence for camouflage, lantern sharks communicate using bursts of glowing of light from patches of skin on the pectoral and pelvic fins. They regulate this specific form of bioluminescence with the hormone prolactin. Having discovered that smalleye pigmy sharks use prolactin to inhibit light emission and that the photophores were restricted to the shark's lower surface, Claes and Mallefet concluded that instead of using bioluminescence for communication, the smalleye pigmy sharks use it purely for camouflage.

The team also explains that the lantern and pigmy sharks inherited their bioluminescence from an ancient predecessor, which used hormones to regulate skin pigmentation for camouflage. According to Claes, this ancient predecessor probably used melatonin to lighten the skin while using prolactin to darken the skin. The team says that smalleye pigmy and lantern sharks regulate their bioluminescence by adjusting the degree of pigmentation in cells covering the photophores. However, the pigmy shark has retained the pigment-mobilising effect of the ancestor's prolactin, which dims their glow by darkening the skin covering the photophores, whereas the lantern sharks have adapted prolactin to lighten the skin and emit light for communication. This suggests that the smalleye pigmy shark is more closely related to their ancient ancestor than the lantern shark.

REFERENCE: Claes, J. M., Ho, H.-C. and Mallefet, J. (2012) Control of luminescence from pigmy shark (Squaliolus aliae) photophores. J. Exp. Biol. 215, 1691-1699.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>