Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smalleye pigmy sharks' bellies shine

26.04.2012
Smalleye pigmy sharks glow for camouflage

Some sharks deserve a blood curdling reputation, but not the diminutive smalleye pigmy shark (Squaliolus aliae). Reaching a maximum length of only 22cm, the tiny animals are more likely to be on someone else's menu. Silhouetted against weak light penetrating from the surface, the tiny sharks should be most at risk from predators approaching from below.

However, Julien Claes from Université catholique de Louvain, Belgium, explains that the minute sharks have evolved a handy trick. Their undersides are covered in tiny light-emitting photophores that probably fill in their telltale silhouettes. Adding that the distantly related velvet belly lantern sharks have adopted this luminous tactic for camouflage and communication, Claes and colleague Jérôme Mallefet were curious to discover whether pigmy sharks had acquired bioluminescence from the same origin, or developed the ability independently. The duo publish their discoveries that pigmy sharks glow for camouflage and that they probably share an ancestor in common with lantern sharks because they use similar mechanisms to regulate their glows in The Journal of Experimental Biology at http://jeb.biologists.com.

Teaming up with Hsuan-Ching Ho from the National Dong Hwa University, Taiwan, the scientists went trawling for smalleye pigmy sharks off the Taiwanese coast. Back in the lab, the team collected samples of the fish's skin, injected substances – ranging from neurotransmitters to hormones, which are known to regulate a wide range of biological processes – and waited to see whether the skin began glowing. Recording the time when the skin started producing light, and the maximum intensity and duration of light production, the team discovered that the hormone melatonin – which stimulates light production in the lantern sharks – made the smalleye pigmy shark's skin glow, while the neurotransmitters – which regulate light production in deep-sea bony fish – had no effect at all.

However, when the team applied prolactin to the glowing skin, they were in for a surprise: the glow faded. Instead of stimulating 30-min-long bursts of glowing light – as it does for lantern sharks – prolactin dimmed the sharks' glow, which, according to Claes, is intriguing from two perspectives.

He explains that in addition to using continual bioluminescence for camouflage, lantern sharks communicate using bursts of glowing of light from patches of skin on the pectoral and pelvic fins. They regulate this specific form of bioluminescence with the hormone prolactin. Having discovered that smalleye pigmy sharks use prolactin to inhibit light emission and that the photophores were restricted to the shark's lower surface, Claes and Mallefet concluded that instead of using bioluminescence for communication, the smalleye pigmy sharks use it purely for camouflage.

The team also explains that the lantern and pigmy sharks inherited their bioluminescence from an ancient predecessor, which used hormones to regulate skin pigmentation for camouflage. According to Claes, this ancient predecessor probably used melatonin to lighten the skin while using prolactin to darken the skin. The team says that smalleye pigmy and lantern sharks regulate their bioluminescence by adjusting the degree of pigmentation in cells covering the photophores. However, the pigmy shark has retained the pigment-mobilising effect of the ancestor's prolactin, which dims their glow by darkening the skin covering the photophores, whereas the lantern sharks have adapted prolactin to lighten the skin and emit light for communication. This suggests that the smalleye pigmy shark is more closely related to their ancient ancestor than the lantern shark.

REFERENCE: Claes, J. M., Ho, H.-C. and Mallefet, J. (2012) Control of luminescence from pigmy shark (Squaliolus aliae) photophores. J. Exp. Biol. 215, 1691-1699.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>