Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smallest tools could give biggest results in bone repair

07.02.2012
When William Murphy works with some of the most powerful tools in biology, he thinks about making tools that can fit together. These constructions sound a bit like socket wrenches, which can be assembled to turn a half-inch nut in tight quarters, or to loosen a rusted-tight one-inch bolt using a very persuasive lever.

The tools used by Murphy, an associate professor of biomedical engineering and orthopedics and rehabilitation at University of Wisconsin-Madison, however, are proteins, which are vastly more flexible than socket wrenches -- and roughly 100 million times smaller. One end of his modular tool may connect to bone, while the other end may stimulate the growth of bone, blood vessels or cartilage.

On February 4th and 6th, at the Orthopedic Research Society meeting in San Francisco, Darilis Suarez-Gonzalez and Jae Sung Lee of the Murphy lab are reporting that orthopedic implants "dip-coated" with modular growth factors can stimulate bone and blood vessel growth in sheep.

For many years, medical scientists have been fascinated by growth factors -- proteins that can stimulate tissues to grow. But these factors can be too effective or not specific enough, leading to cancer rather than the controlled growth needed for healing.

Murphy wants to start applying the manifold benefits of the modular approach to healing or regenerating bone, tendon, and ligaments, and in particular to replacement surgery after an artificial joint has loosened or failed. Temporarily stimulating bones to grow by placing growth factors near the new implant could shorten healing time and ensure a good, tight fit.

The approach could also be used for reattaching ligaments to bone after sports injuries and healing large bone defects during spinal fusion, facial reconstruction or trauma. In this work, Murphy collaborates with two associate professors of orthopedics and rehabilitation at the School of Medicine and Public Health. "Ben Graf focuses on knee injuries in sports medicine," he says, "and David Goodspeed, a lieutenant colonel in the Army who has seen blast injuries during multiple tours in Iraq, is working on the kind of major traumatic wound we think is potentially treatable using this approach."

The working end of the modular structure may feature a fragment of a growth factor, but not the entire protein. "Often, you just want the specific regions that activate the signaling pathways, because that can reduce the chances of stimulating unwanted growth, even cancer," he says.

At the other end, Murphy may place an anchoring molecule that binds to the bone and prevents the modular structure from migrating away from the wound.

With the modular approach, he says, "you might be able to stimulate bone formation without the side effects. We are trying to decrease stimulation outside of the bone defect, trying to design these molecules to specifically generate new bone in a defect, and to stay there."

Animal tests, performed in collaboration with Mark Markel, a professor of veterinary medicine, have shown that the bone is denser around the implant, and that the union between the implant and the bone is stronger than produced by state-of-the-art orthopedic techniques. The added growth factors have not been detected elsewhere in the animal, Murphy says.

Engineering each section of the molecule separately allows their properties to be tailored as needed. "We can take similar protein structures and modulate them," Murphy says. "If we want a molecule that binds very strongly to the surface of a bone graft, we can do that. If we want one that releases over controllable time-frames, we can do that as well."

Moving from the lab to the clinic is a major step, and Murphy knows that many hurdles remain. "We have shown that this can work in a large, clinically relevant animal model, but realistically, I don't see this being used in the clinic within the next five years."

Murphy says his approach is inspired by biology without trying to exactly duplicate normal communication between cells and tissues. "We are not interested in specifically mimicking a particular structure or function, but nature uses a variety of fundamental mechanisms during development and regeneration, and we are taking lessons from them and designing synthetic systems to achieve similar outcomes. We are not repeating nature, but we are inspired by nature."

David Tennenbaum, 608-265-8549, djtenenb@wisc.edu

William Murphy | EurekAlert!
Further information:
http://www.wisc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>