Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller plants punch above their weight in the forest

16.07.2009
New findings from Queen's University biologists show that in the plant world, bigger isn't necessarily better.

"Until now most of the thinking has suggested that to be a good competitor in the forest, you have to be a big plant," says Queen's Biology professor Lonnie Aarssen. "But our research shows it's virtually the other way around."

Previous studies revealed that larger plant species monopolize sunlight, water and other resources, limiting the number of smaller plant species that can exist around them. But new research has proven that this is not generally the case in natural vegetation.

In the Queen's project, PhD student Laura Keating targeted the largest individuals or "host plants" of 16 woody plant species growing in the Okanagan Valley, British Columbia. The research team calculated the number and variety of plants that neighboured each large host plant. They then randomly selected plots without host plants and calculated the plant species there as well. The research showed that the massive trees have no effect on the number of species with which they coexist.

"Think of the plants like professional boxers," says Professor Aarssen. "To win the fight, you need more than a solid punch; you need to be able to tolerate all the punches you're going to take. The winner may be the competitor with the superior 'staying power'."

Smaller plants have many advantages over their overbearing neighbours, Professor Aarssen notes. Larger species generate physical space niches under their canopies where smaller species thrive. Smaller plants are much more effective than large trees at utilizing available resources. They also produce seeds at a much younger age and higher rate than their bigger counterparts, and establish much more quickly – thus competing with the seedlings of larger species.

"A growing body of literature is calling for re-evaluation of traditional views on the role of plant size in affecting competitive ability, community assembly and species coexistence," he adds.

The study was recently published in the international Journal of Plant Ecology. It can be viewed at http://jpe.oxfordjournals.org/cgi/content/full/rtp012v1

Jeff Drake | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>