Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smaller plants punch above their weight in the forest

New findings from Queen's University biologists show that in the plant world, bigger isn't necessarily better.

"Until now most of the thinking has suggested that to be a good competitor in the forest, you have to be a big plant," says Queen's Biology professor Lonnie Aarssen. "But our research shows it's virtually the other way around."

Previous studies revealed that larger plant species monopolize sunlight, water and other resources, limiting the number of smaller plant species that can exist around them. But new research has proven that this is not generally the case in natural vegetation.

In the Queen's project, PhD student Laura Keating targeted the largest individuals or "host plants" of 16 woody plant species growing in the Okanagan Valley, British Columbia. The research team calculated the number and variety of plants that neighboured each large host plant. They then randomly selected plots without host plants and calculated the plant species there as well. The research showed that the massive trees have no effect on the number of species with which they coexist.

"Think of the plants like professional boxers," says Professor Aarssen. "To win the fight, you need more than a solid punch; you need to be able to tolerate all the punches you're going to take. The winner may be the competitor with the superior 'staying power'."

Smaller plants have many advantages over their overbearing neighbours, Professor Aarssen notes. Larger species generate physical space niches under their canopies where smaller species thrive. Smaller plants are much more effective than large trees at utilizing available resources. They also produce seeds at a much younger age and higher rate than their bigger counterparts, and establish much more quickly – thus competing with the seedlings of larger species.

"A growing body of literature is calling for re-evaluation of traditional views on the role of plant size in affecting competitive ability, community assembly and species coexistence," he adds.

The study was recently published in the international Journal of Plant Ecology. It can be viewed at

Jeff Drake | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>