Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Step Towards Growing Tissue in the Lab

20.03.2014

University of Adelaide mathematicians have devised a method for identifying how cell clusters have formed by analysing an image of the cluster.

Published in the Journal of Theoretical Biology, their mathematical modelling tool will be useful in helping biologists and tissue engineers to move towards growing human tissue such as liver in the laboratory.

“When any tissue or organ develops, the cells have to organise themselves into the correct structure,” says Dr Edward Green, researcher in the University’s School of Mathematical Sciences. “This self-organisation process is important in regenerative medicine where scientists are trying to grow tissues in the laboratory. Getting the right structure is key to ensuring the tissue is viable and functional.

“We know that the control of the organisation process is very complex, and it's still not well understood, which is why we're using modelling to explore simple examples like cluster formation. We looked at two main ways of producing cell clusters – by attraction through chemical and other signals and by proliferation (cells dividing).

“The idea behind our research is that, for any particular cell type, if you are trying to get cells to organise in certain ways, you need to know how they are behaving. We show how you might be able to analyse this using a combination of models and image analysis.”

The paper introduces a quantitative measure of the pattern of clustering from an image, producing a statistic called the ‘pair correlation function’ which shows the relationship between cells.

“The two clustering mechanisms produce different patterns. In some cases you can spot the differences simply by looking, but the pair correlation function allows you to distinguish them, even when you can’t see any obvious differences between the pictures by eye,” says Dr Green.

They validated their mathematical model experimentally using cells with known clustering mechanisms in collaboration with Queensland University of Technology.

“Our tool gives a basic understanding of the process in clustering,” says co-author Dr Ben Binder, Senior Lecturer in the School of Mathematical Sciences. “It will be useful in assessing what factors may be used to enhance the process of growing cells.

“Next steps will be feeding experimental data back into the model to simulate biological processes. Instead of running lengthy and expensive experiments, we can look at the potential effects of different factors through the computer.”

Media Contact:

Dr Edward Green
Lecturer
School of Mathematical Sciences
The University of Adelaide
Phone: +61 8 8313 1081
Mobile: +61 (0)439 191 932
edward.green@adelaide.edu.au

Dr Ben Binder
Senior Lecturer
School of Mathematical Sciences
The University of Adelaide
Phone: +61 8 8313 3244
Mobile: +61 (0) 429 401 874
benjamin.binder@adelaide.edu.au

Robyn Mills | newswise
Further information:
http://www.adelaide.edu.au

Further reports about: Green Senior Tissue factors mathematical mechanisms structure

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>