Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small RNA as Modular Kit

16.11.2010
Even pathogenic bacteria can suffer from stress – when they are attacked by the immune system of their host, for instance. How salmonella bacteria react to such stress conditions is described by Würzburg infection biologists in the scientific journal PNAS.

Salmonella is a type of bacteria that can cause severe diarrhea in humans. On entering the digestive tract, these bacteria will not proliferate unchallenged: The immune system attacks the intruders – with peptides, for instance. These peptides are small proteins, which tear holes in the envelope of the bacteria.

The salmonella react immediately to such envelope damage: Among other things, they produce a small RNA molecule (RybB-sRNA), which promptly prevents the synthesis of about ten proteins in the bacterial cell. All of the proteins in question fulfill biological functions on the envelope of the bacteria.

A reasonable mechanism: "In this way, the salmonella bacteria quickly help themselves. Since the outer membrane is full of holes, the proteins would not be able to persist there and fulfill their function," explains Kai Papenfort of the Institute for Molecular Infection Biology at the University of Würzburg. Thus, the small RNA molecule avoids a waste of protein resources.

RNA start region binds precursors for proteins

But how does the small RNA manage to regulate the production of multiple proteins all at the same time? An answer to this question is given by the Würzburg researchers in the current issue of the scientific journal PNAS: "The start region of the sRNA molecule binds the transcripts, which are a kind of precursor for all these proteins," says Professor Jörg Vogel, the head of the institute. "As soon as this happens, the protein production stops." To prove this, the researchers transferred this start region to other RNA molecules. As a result, the modified molecules also brought the production of the ten proteins to a halt.

Without change in the evolution of the bacteria

With this research, the Würzburg scientists have shown for the first time: Even small RNA molecules possess clearly defined regions to which a regulatory function can be attributed. Previously, this was known to be true only for proteins, but not for "simpler" molecules such as RNA. "RNA also consists of functional units, which can be newly arranged on the basis of a modular design principle," explains Professor Vogel.

Furthermore, the regulatory region represents an RNA section, which has not changed in the evolution of the bacteria. This means: "This RNA is present not only in salmonella, but also in many other pathogenic bacteria and it always has the same function," explains Kai Papenfort.

A molecular structure, which has not undergone any evolutionary change – this suggests that it must be essential. It may be a factor, which is indispensable to the bacteria for the infection process and could play a role in triggering the disease. To clarify whether this is the case is the next objective of the Würzburg researchers. Ultimately, the start region of RybB-sRNA might even become a starting point for new drugs.

Basic research on small RNA

The team of Professor Jörg Vogel conducts basic research on small RNA molecules, the chains of which consist of about 100 components (small RNA, short: sRNA). This particular type of RNA regulates life processes in bacteria and more highly developed cells. Besides salmonella, the Würzburger scientists also used helicobacter as a model organism – a bacterium, which can cause stomach cancer.

"Evidence for an autonomous 5‘ target recognition domain in an Hfq-associated small RNA", Kai Papenfort, Marie Bouvier, Franziska Mika, Cynthia M. Sharma, and Jörg Vogel; PNAS, published online on 8 November 2010, doi 10.1073/pnas.1009784107

Contact person

Dr. Kai Papenfort, Institute for Molecular Infection Biology at the University of Würzburg, T +49 (0)931 31-81230, kai.papenfort@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>