Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small RNA as Modular Kit

16.11.2010
Even pathogenic bacteria can suffer from stress – when they are attacked by the immune system of their host, for instance. How salmonella bacteria react to such stress conditions is described by Würzburg infection biologists in the scientific journal PNAS.

Salmonella is a type of bacteria that can cause severe diarrhea in humans. On entering the digestive tract, these bacteria will not proliferate unchallenged: The immune system attacks the intruders – with peptides, for instance. These peptides are small proteins, which tear holes in the envelope of the bacteria.

The salmonella react immediately to such envelope damage: Among other things, they produce a small RNA molecule (RybB-sRNA), which promptly prevents the synthesis of about ten proteins in the bacterial cell. All of the proteins in question fulfill biological functions on the envelope of the bacteria.

A reasonable mechanism: "In this way, the salmonella bacteria quickly help themselves. Since the outer membrane is full of holes, the proteins would not be able to persist there and fulfill their function," explains Kai Papenfort of the Institute for Molecular Infection Biology at the University of Würzburg. Thus, the small RNA molecule avoids a waste of protein resources.

RNA start region binds precursors for proteins

But how does the small RNA manage to regulate the production of multiple proteins all at the same time? An answer to this question is given by the Würzburg researchers in the current issue of the scientific journal PNAS: "The start region of the sRNA molecule binds the transcripts, which are a kind of precursor for all these proteins," says Professor Jörg Vogel, the head of the institute. "As soon as this happens, the protein production stops." To prove this, the researchers transferred this start region to other RNA molecules. As a result, the modified molecules also brought the production of the ten proteins to a halt.

Without change in the evolution of the bacteria

With this research, the Würzburg scientists have shown for the first time: Even small RNA molecules possess clearly defined regions to which a regulatory function can be attributed. Previously, this was known to be true only for proteins, but not for "simpler" molecules such as RNA. "RNA also consists of functional units, which can be newly arranged on the basis of a modular design principle," explains Professor Vogel.

Furthermore, the regulatory region represents an RNA section, which has not changed in the evolution of the bacteria. This means: "This RNA is present not only in salmonella, but also in many other pathogenic bacteria and it always has the same function," explains Kai Papenfort.

A molecular structure, which has not undergone any evolutionary change – this suggests that it must be essential. It may be a factor, which is indispensable to the bacteria for the infection process and could play a role in triggering the disease. To clarify whether this is the case is the next objective of the Würzburg researchers. Ultimately, the start region of RybB-sRNA might even become a starting point for new drugs.

Basic research on small RNA

The team of Professor Jörg Vogel conducts basic research on small RNA molecules, the chains of which consist of about 100 components (small RNA, short: sRNA). This particular type of RNA regulates life processes in bacteria and more highly developed cells. Besides salmonella, the Würzburger scientists also used helicobacter as a model organism – a bacterium, which can cause stomach cancer.

"Evidence for an autonomous 5‘ target recognition domain in an Hfq-associated small RNA", Kai Papenfort, Marie Bouvier, Franziska Mika, Cynthia M. Sharma, and Jörg Vogel; PNAS, published online on 8 November 2010, doi 10.1073/pnas.1009784107

Contact person

Dr. Kai Papenfort, Institute for Molecular Infection Biology at the University of Würzburg, T +49 (0)931 31-81230, kai.papenfort@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>