Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small RNA as Modular Kit

Even pathogenic bacteria can suffer from stress – when they are attacked by the immune system of their host, for instance. How salmonella bacteria react to such stress conditions is described by Würzburg infection biologists in the scientific journal PNAS.

Salmonella is a type of bacteria that can cause severe diarrhea in humans. On entering the digestive tract, these bacteria will not proliferate unchallenged: The immune system attacks the intruders – with peptides, for instance. These peptides are small proteins, which tear holes in the envelope of the bacteria.

The salmonella react immediately to such envelope damage: Among other things, they produce a small RNA molecule (RybB-sRNA), which promptly prevents the synthesis of about ten proteins in the bacterial cell. All of the proteins in question fulfill biological functions on the envelope of the bacteria.

A reasonable mechanism: "In this way, the salmonella bacteria quickly help themselves. Since the outer membrane is full of holes, the proteins would not be able to persist there and fulfill their function," explains Kai Papenfort of the Institute for Molecular Infection Biology at the University of Würzburg. Thus, the small RNA molecule avoids a waste of protein resources.

RNA start region binds precursors for proteins

But how does the small RNA manage to regulate the production of multiple proteins all at the same time? An answer to this question is given by the Würzburg researchers in the current issue of the scientific journal PNAS: "The start region of the sRNA molecule binds the transcripts, which are a kind of precursor for all these proteins," says Professor Jörg Vogel, the head of the institute. "As soon as this happens, the protein production stops." To prove this, the researchers transferred this start region to other RNA molecules. As a result, the modified molecules also brought the production of the ten proteins to a halt.

Without change in the evolution of the bacteria

With this research, the Würzburg scientists have shown for the first time: Even small RNA molecules possess clearly defined regions to which a regulatory function can be attributed. Previously, this was known to be true only for proteins, but not for "simpler" molecules such as RNA. "RNA also consists of functional units, which can be newly arranged on the basis of a modular design principle," explains Professor Vogel.

Furthermore, the regulatory region represents an RNA section, which has not changed in the evolution of the bacteria. This means: "This RNA is present not only in salmonella, but also in many other pathogenic bacteria and it always has the same function," explains Kai Papenfort.

A molecular structure, which has not undergone any evolutionary change – this suggests that it must be essential. It may be a factor, which is indispensable to the bacteria for the infection process and could play a role in triggering the disease. To clarify whether this is the case is the next objective of the Würzburg researchers. Ultimately, the start region of RybB-sRNA might even become a starting point for new drugs.

Basic research on small RNA

The team of Professor Jörg Vogel conducts basic research on small RNA molecules, the chains of which consist of about 100 components (small RNA, short: sRNA). This particular type of RNA regulates life processes in bacteria and more highly developed cells. Besides salmonella, the Würzburger scientists also used helicobacter as a model organism – a bacterium, which can cause stomach cancer.

"Evidence for an autonomous 5‘ target recognition domain in an Hfq-associated small RNA", Kai Papenfort, Marie Bouvier, Franziska Mika, Cynthia M. Sharma, and Jörg Vogel; PNAS, published online on 8 November 2010, doi 10.1073/pnas.1009784107

Contact person

Dr. Kai Papenfort, Institute for Molecular Infection Biology at the University of Würzburg, T +49 (0)931 31-81230,

Robert Emmerich | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>