Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules shed light on cancer therapies

23.08.2011
Patients suffering from an aggressive brain cancer will benefit from the results of a University of Illinois study that could advance the development of targeted gene therapies and improve prognosis.

"We have advanced the understanding of the role of microRNAs on glioblastoma multiforme, a deadly brain cancer, by studying the networks between the microRNAs and their target genes associated with different stages of cancer development and progression," said Kristin Delfino, a U of I doctoral candidate in animal science with a focus in genetics and bioinformatics.

What exactly are microRNAs? microRNAs are small, non-coding RNA molecules that regulate the expression of genes such as oncogenes or tumor suppressor genes. U of I researchers used a novel approach to identify the simultaneous association between tens of thousands of microRNAs, target genes, and glioblastoma progression and survival.

Delfino integrated clinical information such as race, gender, therapy, survival, and cancer stage from 253 patients together with genome-wide microRNA and gene expression data.

"We looked at the big picture and how microRNAs work together," Delfino said. "When you look at a single microRNA alone, it can seem significant. But when you evaluate it in the context of all other microRNAs, some turn out to be more significant and others may not be as significant as they appear on their own. The systems biology approach that we implemented is critical for understanding the gene pathways influencing cancer."

The study evaluated 534 microRNAs together, unlike the typical method of studying one at a time. They confirmed 25 microRNAs previously associated with glioblastoma survival and identified 20 other microRNAs associated with initiation or growth of other cancer types such as breast cancer, ovarian cancer and gastric adenocarcinoma.

"These findings suggest common pathways that can be targeted with similar drugs already developed and tested for other cancers," said Sandra Rodriguez Zas, co-researcher and U of I professor of animal science and bioinformatics.

In addition, researchers found that some of the microRNA biomarkers of survival are personalized, Rodriguez Zas said. This means that they are particularly useful for patients of a specific race, gender or therapy. Other microRNAs are equally effective regardless of the clinical conditions of the patient.

"These biomarkers can serve as the basis to dig deeper into cancer studies," Delfino said. "Cancer affects us all in one way or another. Unfortunately, we still don't know how it's caused, what takes place when it is caused and how to cure it. But these biomarkers give us guidance into developing specific gene therapies to target glioblastoma."

Today patients can easily and cheaply be screened for microRNA and target gene levels, Rodriguez Zas said.

"Based on our research, that information can be used to select the most effective therapy and develop prognosis strategies," Rodriguez-Zas said.

This study, "Therapy-, Gender- and Race-specific microRNA Markers, Target Genes and Networks Related to Glioblastoma Recurrence and Survival," was published in Cancer Genomics & Proteomics. Co-researchers include Kristin Delfino, Nicola Serao, Bruce Southey and Sandra Rodriguez Zas, all of the U of I.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>