Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules may prevent ebola infection

20.01.2011
Ebola, a virus that causes deadly hemorrhagic fever in humans, has no known cure or vaccine. But a new study by University of Illinois at Chicago scientists has uncovered a family of small molecules which appear to bind to the virus's outer protein coat and may inhibit its entry into human cells.

The results are to be published in the Journal of Medicinal Chemistry and are now online.

Previous studies have shown that small molecules can interfere with the Ebola infection process, says Duncan Wardrop, associate professor of chemistry at UIC and corresponding author of the new study. But almost all of these compounds "appear to exert their effects by altering the cells' response to the virus once it's entered the cell -- by which time it's too late," he said.

The new findings demonstrate that it is possible for a small molecule to bind to the virus before it has a chance to enter the cell and thereby prevent infection, he said.

Wardrop collaborated with UIC virologist Lijun Rong, who created a screening system that uses a chimeric HIV-Ebola virus bearing the protein coat of the Ebola virus. The chimera looks like Ebola but isn't life-threatening for scientists to work with.

After screening more than 230 candidate compounds, Wardrop and Rong found two molecules that inhibited cell entry, but only one that demonstrated specificity for the Ebola virus -- plus a bonus.

"We found that our lead compound also inhibits Marburg," Wardrop said, referring to a related virus that, along with Ebola, is one of the deadliest pathogens known. "That was a nice surprise. There's growing evidence the two viruses have the same cell-entry mechanism, and our observations appear to point to this conclusion."

In an effort to find even more potent anti-Ebola agents, Wardrop and graduate student Maria Yermolina synthesized a series of derivatives of the lead molecule -- a member of a family of compounds called isoxazoles -- and found several that displayed increased activity against Ebola infection. Exactly how and where these small molecules bind to the virus's protein coat is now being determined through nuclear magnetic resonance spectroscopy, done by Michael Caffrey, associate professor of biochemistry and molecular genetics.

While it's too early to predict whether the findings will lead to a new treatment for Ebola or Marburg infections, Wardrop said the positive results so far raise hope. The next step would be to see if small-molecule treatments prove effective in animal models.

The UIC scientists also hope their findings will provide further insight into mechanisms the Ebola and Marburg viruses use to enter human cells.

"This knowledge may spur development of new anti-viral agents," Wardrop said.

"From a wider perspective, we're searching for compounds to use as probes to study biological processes. Small molecules which bind to specific proteins and alter their function are invaluable to understanding what these proteins do in living cells," he said.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>