Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules might block mutant protein production in Huntington's disease

05.05.2009
Molecules that selectively interfere with protein production can stop human cells from making the abnormal molecules that cause Huntington’s disease, researchers at UT Southwestern Medical Center have found.

These man-made molecules also were effective against the abnormal protein that causes Machado-Joseph disease, a neurological condition similar to Huntington’s.

The work has been done only in cultured cells, and it will take years before the effectiveness of this process can be tested in patients, the researchers cautioned.

“I wouldn’t want to give Huntington’s patients or gene carriers any false hope, but I am excited about where this work might go in the future,” said Dr. David Corey, professor of pharmacology and biochemistry at UT Southwestern and senior author of the study, which appears online May 3 in Nature Biotechnology.

The researchers’ approach relies on interfering with the steps by which genetic information in cells is “translated” from DNA to make proteins, which carry out vital biological functions.

Huntington’s and Machado-Joseph are fatal inherited diseases caused by abnormal repeats of a small segment in a person’s DNA, or genetic code, represented by the letters CAG. These mutations result in the body producing malfunctioning proteins that cause the diseases. The more repeats, the worse the disease, and the earlier in life it appears. A person with the disease carries one normal copy of the gene and one mutated copy in his or her cells.

In Huntington’s, this CAG repeat occurs in a gene called huntingtin, and in Machado-Joseph, it occurs in a gene called ataxin-3. A person with Huntington’s can have up to 100 CAG repeats. CAG repeats are involved in several other neurodegenerative diseases, including Fragile X syndrome, the most common form of mental retardation, and myotonic dystrophy.

While these genes are best known for the devastating effects of their mutated forms, their normal forms are essential for embryonic development, nerve function and other bodily processes. Any treatment that interferes with the mutant forms must leave the normal forms as unaffected as possible, Dr. Corey said.

“Attempting to intervene is very risky, but because the problem is important, it’s worth doing,” he said.

In the current study, the researchers created short lengths of molecules that resemble ribonucleic acid (RNA), the chemical cousin of DNA. These mimics, called PNAs and LNAs, were specifically designed to bind to CAG repeats, preventing cells from creating the abnormal proteins. The researchers also designed short lengths of RNA called small interfering RNA, or siRNA, to interfere with CAG repeats.

In cells from Huntington’s patients, the PNAs, LNAs and siRNAs decreased the amount of mutant protein produced, in some cases up to 100 percent. The effect was greatest when the compounds interfered with long lengths of CAG repeats; the effectiveness varied, however, among cells taken from different patients.

Some forms of these compounds left the normal forms of huntingtin and ataxin-3 proteins undisturbed, but other compounds partly or completely blocked their formation. In some cells, some of the RNA mimics drastically cut the production of both mutant and normal proteins – an undesirable effect, Dr. Corey said.

These findings indicate that further tweaking of the molecular structures of the RNA mimics will be needed to minimize the effects on normal proteins.

“It is encouraging that small chemical changes could substantially enhance selectivity,” Dr. Corey said. “If we can test a handful of compounds and identify better ones, we have reason to believe that more testing will continue to produce significant improvement.”

Because this study was done in cultured cells, and not in whole animals or humans, it does not indicate how much of the abnormal proteins must be blocked to treat the disease effectively, he said. “Fifty percent inhibition might be enough, but that remains to be determined,” Dr. Corey said.

In future studies, the researchers plan to try these RNA mimics in whole animals, using several different mutations of the genes.

Laurie Tompkins, who oversees neurogenetics grants at the National Institutes of Health’s National Institute of General Medical Sciences, said the ability to control individual genes makes this work stand out.

“By exploiting processes that occur in normal cells, Dr. Corey has come up with a clever way to do this that may well lead to new ways to combat Huntington’s and other related diseases,” she said.

Other UT Southwestern researchers from the Department of Pharmacology involved in the study were co-lead authors Dr. Jiaxin Hu, assistant instructor, and Dr. Masayuki Matsui, postdoctoral researcher; Dr. Keith Gagnon, postdoctoral researcher; and graduate student Jacob Schwartz; Dr. Jun Wu, assistant instructor in physiology; and Dr. Ilya Bezprozvanny, professor of physiology, also participated, as did researchers from Sigma-Aldrich Genopole Campus in France.

The study was funded by the High-Q Foundation, the National Institutes of Health, the Welch Foundation and the Ataxia MJD Research Project Inc.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>