Small Molecule Triggers Bacterial Community

While bacterial cells tend to be rather solitary individuals, they are also known to form intricately structured communities called biofilms. But until now, no one has known the mechanisms that cause isolated bacteria to suddenly aggregate into a social network. New insights from the lab of Harvard Medical School microbial geneticist Roberto Kolter reveal previously unknown communication pathways that cause such social phenomenon.

Using the non-pathogenic Bacillus subtilis as a model organism, Kolter and postdoctoral researcher Daniel Lopez discovered a group of natural, soil-based products that trigger communal behavior in bacteria. One molecule in particular, surfactin, is produced by B. subtilis. Biofilm formation begins when surfactin, and other similar molecules, cause bacteria to leak potassium. As potassium levels decline, a membrane protein on the bacterium stimulates a cascade of gene activity that signals neighboring cells to form a quorum. As a result, biofilms form.

The authors note that it’s still unclear how biofilm formation benefits the bacteria, and they hypothesize that it might be an antibacterial defense against competing species. Still, the notion that a single small molecule can induce multicellularity intrigues the researchers.

“Typically, scientists try to discover new antibiotics through some rather blunt means, like simply looking to see if one bacterium can kill another,” says Kolter. “This discovery of a single molecule causing such a dramatic response in bacteria hints at a new and potentially effective way to possibly discover antibiotics.”

These findings are published in the Proceedings of the National Academy of Sciences.

Media Contact

David Cameron Newswise Science News

More Information:

http://www.hms.harvard.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors