Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Molecule Triggers Bacterial Community

23.12.2008
Researchers identify mechanisms behind biofilm formations, with implications for developing new antibiotics.

While bacterial cells tend to be rather solitary individuals, they are also known to form intricately structured communities called biofilms. But until now, no one has known the mechanisms that cause isolated bacteria to suddenly aggregate into a social network. New insights from the lab of Harvard Medical School microbial geneticist Roberto Kolter reveal previously unknown communication pathways that cause such social phenomenon.

Using the non-pathogenic Bacillus subtilis as a model organism, Kolter and postdoctoral researcher Daniel Lopez discovered a group of natural, soil-based products that trigger communal behavior in bacteria. One molecule in particular, surfactin, is produced by B. subtilis. Biofilm formation begins when surfactin, and other similar molecules, cause bacteria to leak potassium. As potassium levels decline, a membrane protein on the bacterium stimulates a cascade of gene activity that signals neighboring cells to form a quorum. As a result, biofilms form.

The authors note that it’s still unclear how biofilm formation benefits the bacteria, and they hypothesize that it might be an antibacterial defense against competing species. Still, the notion that a single small molecule can induce multicellularity intrigues the researchers.

“Typically, scientists try to discover new antibiotics through some rather blunt means, like simply looking to see if one bacterium can kill another,” says Kolter. “This discovery of a single molecule causing such a dramatic response in bacteria hints at a new and potentially effective way to possibly discover antibiotics.”

These findings are published in the Proceedings of the National Academy of Sciences.

David Cameron | Newswise Science News
Further information:
http://www.hms.harvard.edu

Further reports about: Bacillus subtilis Biofilm Molecule Small Molecule bacteria

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>