Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Evolutionary Shifts Make Big Impacts – Like Developing Night Vision

22.05.2009
Minor differences in the timing of cell proliferation can explain the large differences found in the eyes of two species – owl monkeys and capuchin monkeys – that evolved from a common ancestor.

In the developing fetus, cell growth follows a very specific schedule. In the eye’s retina, for example, cones – which help distinguish color during the day – develop before the more light-sensitive rods – which are needed for night vision.

But minor differences in the timing of cell proliferation can explain the large differences found in the eyes of two species – owl monkeys and capuchin monkeys – that evolved from a common ancestor.

Researchers from Cornell, St. Jude’s Children’s Research Hospital in Tennessee and the Federal University of Para, Brazil, have found an evolutionary mechanism that provides insight into how important changes in brain structure of primates can evolve.

That evolution appears to proceed via simple genetic changes that affect the timing of development of brain regions, they report in a paper published May 18 online and in a future print issue of Proceedings of the National Academy of Sciences.

In both monkey species, the specialized eye cells develop in the growing embryo from a single retinal progenitor cell. In their basic design, the eyes of these primates have the capability and necessary architecture to be either nocturnal or diurnal, based on a species’ ecological niche and needs, said Barbara Finlay, Cornell neurobiologist and psychologist, and senior author on the paper.

Finlay and her colleagues compared the developing eyes in fetuses of the two species to better understand how the nocturnal owl monkeys developed retinas with many more rod cells than cones, while capuchin monkeys, which are active during the day (diurnal), developed more cone cells than rods.

“These two species evolved about 15 million years ago from a common ancestor that had a diurnal eye,” said Finlay. “So we believed that comparing how their eyes develop during embryonic growth could help us understand what evolutionary changes would be required to evolve from a diurnal to a nocturnal eye.”

By comparing the timing of retinal cell proliferation in the two species, the researchers found evidence that an extended period of progenitor cell proliferation in the owl monkey gave rise to an increased number of rod and other associated cells that make its eyes adept at night vision; the eyes also evolved to be large, with bigger light-gathering and light-sensing structures needed for nocturnal sight.

“The beauty of the evolutionary mechanism we have identified is that it enables the eye to almost toggle back and forth between a nocturnal and a diurnal structure,” said neurobiologist Michael Dyer of St. Jude’s hospital. “It is an elegant system that gives the eye a lot of flexibility in terms of specialization.”

This research was funded by the National Science Foundation and Brazil’s NSF equivalent, National Counsel of Technological and Scientific Development.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>