Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Evolutionary Shifts Make Big Impacts – Like Developing Night Vision

22.05.2009
Minor differences in the timing of cell proliferation can explain the large differences found in the eyes of two species – owl monkeys and capuchin monkeys – that evolved from a common ancestor.

In the developing fetus, cell growth follows a very specific schedule. In the eye’s retina, for example, cones – which help distinguish color during the day – develop before the more light-sensitive rods – which are needed for night vision.

But minor differences in the timing of cell proliferation can explain the large differences found in the eyes of two species – owl monkeys and capuchin monkeys – that evolved from a common ancestor.

Researchers from Cornell, St. Jude’s Children’s Research Hospital in Tennessee and the Federal University of Para, Brazil, have found an evolutionary mechanism that provides insight into how important changes in brain structure of primates can evolve.

That evolution appears to proceed via simple genetic changes that affect the timing of development of brain regions, they report in a paper published May 18 online and in a future print issue of Proceedings of the National Academy of Sciences.

In both monkey species, the specialized eye cells develop in the growing embryo from a single retinal progenitor cell. In their basic design, the eyes of these primates have the capability and necessary architecture to be either nocturnal or diurnal, based on a species’ ecological niche and needs, said Barbara Finlay, Cornell neurobiologist and psychologist, and senior author on the paper.

Finlay and her colleagues compared the developing eyes in fetuses of the two species to better understand how the nocturnal owl monkeys developed retinas with many more rod cells than cones, while capuchin monkeys, which are active during the day (diurnal), developed more cone cells than rods.

“These two species evolved about 15 million years ago from a common ancestor that had a diurnal eye,” said Finlay. “So we believed that comparing how their eyes develop during embryonic growth could help us understand what evolutionary changes would be required to evolve from a diurnal to a nocturnal eye.”

By comparing the timing of retinal cell proliferation in the two species, the researchers found evidence that an extended period of progenitor cell proliferation in the owl monkey gave rise to an increased number of rod and other associated cells that make its eyes adept at night vision; the eyes also evolved to be large, with bigger light-gathering and light-sensing structures needed for nocturnal sight.

“The beauty of the evolutionary mechanism we have identified is that it enables the eye to almost toggle back and forth between a nocturnal and a diurnal structure,” said neurobiologist Michael Dyer of St. Jude’s hospital. “It is an elegant system that gives the eye a lot of flexibility in terms of specialization.”

This research was funded by the National Science Foundation and Brazil’s NSF equivalent, National Counsel of Technological and Scientific Development.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>