Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bits of genetic material fight cancer's spread

16.10.2013
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.

Researchers at Princeton University have found that microRNAs — small bits of genetic material capable of repressing the expression of certain genes — may serve as both therapeutic targets and predictors of metastasis, or a cancer's spread from its initial site to other parts of the body. The research was published in the journal Cancer Cell.


Researchers at Princeton University have found that microRNAs -- small bits of genetic material capable of repressing the expression of certain genes -- may serve as both therapeutic targets and predictors of metastasis, or a cancer's spread from its initial site to other parts of the body. In this image, breast cancer cells (right) spread toward the hindlimb bone (left), using the host's own bone-destroying cells (osteoclasts) to continue their advance.

Credit: (Image courtesy of Yibin Kang, Department of Molecular Biology)

MicroRNAs are specifically useful for tackling bone metastasis, which occurs in about 70 percent of patients with late-stage cancer, said senior author Yibin Kang, Princeton's Warner-Lambert/Parke-Davis Professor of Molecular Biology. During bone metastasis, tumors invade the bone and take over the cells known as osteoclasts that normally break down old bone material as new material grows. These cells then go into overdrive and dissolve the bone far more quickly than they would during normal bone turnover, which leads to bone lesions, bone fracture, nerve compression and extreme pain.

"The tumor uses the osteoclasts as forced labor," explained Kang, who is a member of the Rutgers Cancer Institute of New Jersey and adviser to Brian Ell, a graduate student in the Princeton Department of Molecular Biology and first author on the study. Kang and Ell worked with scientists at the IRCCS Scientific Institute of Romagna for the Study and Treatment of Cancer in Meldola, Italy, and the University Cancer Center in Hamburg, Germany. In this video, Ell describes his research on using small RNAs for treating and monitoring bone metastasis.

MicroRNAs can reduce that forced labor by inhibiting osteoclast proteins and thus limiting the number of osteoclasts present. Ell and his colleagues observed that bones exhibiting metastasis developed significantly fewer lesions when injected with microRNAs. Their findings suggest that microRNAs could be effective treatment targets for tackling bone metastasis — and also may help doctors detect the cancer's spread to the bone, Kang said. Samples collected from human patients revealed a strong correlation between elevated levels of another group of microRNAs and the occurrence of bone metastasis, the researchers found.

In a commentary accompanying the study in Cancer Cell, researchers who were not associated with the work wrote, "This [study] represents significant insight into our understanding of the organ-specific function and pathological activity of miRNAs, which could lead to improvements in diagnosis, treatment and prevention of bone metastases and elucidates a unique aspect of the bone microenvironment to support tumor growth in bone." The commentary was authored by David Waning, Khalid Mohammad and Theresa Guise of Indiana University in Indianapolis.

Kang said he ultimately hopes to extend mice experimentation to clinical trials. "In the end, we want to help the patients," he said.

[Images can be seen at http://www.princeton.edu/main/news/archive/S38/18/50A40. To obtain high-res images, contact Princeton science writer Morgan Kelly, (609) 258-5729, mgnkelly@princeton.edu]

The research was supported by the Susan G. Komen for the Cure Foundation, grant BC123187 from the U. S. Department of Defense, grants R01CA134519 and R01CA141062 from the National Institutes of Health, and the Brewster Foundation. The research was also supported by the Preclinical Imaging and Flow Cytometry Shared Resources of the Cancer Institute of New Jersey (P30CA072720). Collaborators were supported by the Champalimaud Foundation, the European Research Council, the Deutsche Forschungsgemeinschaft and the German Minister of Education and Research.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>