Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLU Uses X-ray Crystallography To Reveal the Structure of Precursor to Blood-Clotting Protein

02.11.2010
Using state-of-the-art robotic and x-ray crystallographic equipment, researchers at Saint Louis University have revealed for the first time the molecular structure of the zymogen, or inactive, form of a blood-clotting enzyme.

In an article published in Proceedings of the National Academy of Sciences, Enrico Di Cera, M.D., chair of the department of biochemistry and molecular biology at Saint Louis University School of Medicine and lead researcher of the study, said the NIH-funded research offers important information about the protein.

“This research is very basic and very important,” said Di Cera. “It provides a missing link between the inactive zymogen form of thrombin and the mature enzyme generated upon vascular injury.”

Before thrombin becomes active, it circulates throughout the blood in the inactive zymogen form. When the active enzyme is needed, for example after a vascular injury, the coagulation cascade is initiated and the zymogen is converted into an active enzyme that causes blood to clot.

Blood clotting performs the important function of stopping blood loss after an injury. However, when triggered in the wrong conditions, clotting can lead to debilitating or fatal conditions like heart attack, stroke and deep vein thrombosis.

In previous laboratory research, Di Cera re-engineered thrombin to act as an anticoagulant, stopping blood from clotting and opening the door to the development of new therapeutic strategies for the treatment of thrombosis, the presence of blood clots in blood vessels, which is responsible for nearly a third of all deaths in the U.S.

While researchers have an understanding of the structure of active thrombin, very little was known about its zymogen form. In order to learn more, researchers used x-ray crystallography to gather data about the molecular structure of the protein.

The process involves growing a crystal of the protein, shooting x-ray beams through the crystal and analyzing the diffraction pattern generated on a detector plate in order to detail the three-dimensional structure of the protein.

The structure of the zymogen form of thrombin provides crucial details about the activation mechanism that sheds light on the way the mature enzyme works. Future research can capitalize on these new findings to define better strategies for therapeutic intervention.

“Until now, we’ve known nothing about the zymogen form of thrombin or any blood-clotting enzyme,” said Di Cera. “All the structural information has been limited to the active form.

“We now know that the zymogen form of thrombin is very different from the mature enzyme, in ways that open new opportunities for therapeutic intervention.”

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.

Carrie Bebermeyer | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>