Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want to slow aging? New research suggests it takes more than antioxidants

07.07.2010
Research published in the journal Genetics shows that your genes may be more important than antioxidants in slowing the body's aging process

Don't put down the red wine and vitamins just yet, but if you're taking antioxidants because you hope to live longer, consider this: a new study published in the June 2010 issue of the journal GENETICS (http://www.genetics.org) casts doubt on the theory that oxidative stress to our tissues shortens lifespan.

That's because researchers from McGill University in Canada have identified mutations in 10 different genes of worms (genes believed to have counterparts in humans) that extend their lifespan without reducing the level of oxidative stress the worms suffer. The results contradict the popular theory that production of toxic reactive oxygen species in tissues is responsible for aging.

"We hope that our study will help in tempering the undue emphasis put on the notion that oxidative stress causes aging and thus that antioxidants could combat aging," said Siegfried Hekimi, Ph.D, the senior author of the study from the Department of Biology at McGill University in Montreal. "We also hope that the genes we have discovered can be used in the future to modulate energy metabolism in a way that can help delay the health issues linked to aging, and possibly increase lifespan itself."

To make their discovery, the scientists exposed a passel of worms (Caenorhabditis elegans) to a chemical that causes random changes in its DNA, and looked among the mutagenized worms for those appearing to have a slow rate of metabolism, manifested in their slow development and slow behavioral responses. They then identified the mutations in these worms that caused this effect, revealing 10 distinct genes involved in metabolism. The scientists' expected that the slowly metabolizing worms would have less oxidative stress, but to the investigators' surprise that was not the case. This suggests that a slow rate of living and reduced energy metabolism is sufficient to increase longevity, even when oxidative stress is not reduced.

"It looks like there's more truth to the cliché, 'slow and steady wins the race,' than we imagined," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This research suggests that if we just eat less, we may not have to suffer eating all that broccoli simply for its antioxidants."

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: Genetics energy metabolism oxidative stress

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>