Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want to slow aging? New research suggests it takes more than antioxidants

07.07.2010
Research published in the journal Genetics shows that your genes may be more important than antioxidants in slowing the body's aging process

Don't put down the red wine and vitamins just yet, but if you're taking antioxidants because you hope to live longer, consider this: a new study published in the June 2010 issue of the journal GENETICS (http://www.genetics.org) casts doubt on the theory that oxidative stress to our tissues shortens lifespan.

That's because researchers from McGill University in Canada have identified mutations in 10 different genes of worms (genes believed to have counterparts in humans) that extend their lifespan without reducing the level of oxidative stress the worms suffer. The results contradict the popular theory that production of toxic reactive oxygen species in tissues is responsible for aging.

"We hope that our study will help in tempering the undue emphasis put on the notion that oxidative stress causes aging and thus that antioxidants could combat aging," said Siegfried Hekimi, Ph.D, the senior author of the study from the Department of Biology at McGill University in Montreal. "We also hope that the genes we have discovered can be used in the future to modulate energy metabolism in a way that can help delay the health issues linked to aging, and possibly increase lifespan itself."

To make their discovery, the scientists exposed a passel of worms (Caenorhabditis elegans) to a chemical that causes random changes in its DNA, and looked among the mutagenized worms for those appearing to have a slow rate of metabolism, manifested in their slow development and slow behavioral responses. They then identified the mutations in these worms that caused this effect, revealing 10 distinct genes involved in metabolism. The scientists' expected that the slowly metabolizing worms would have less oxidative stress, but to the investigators' surprise that was not the case. This suggests that a slow rate of living and reduced energy metabolism is sufficient to increase longevity, even when oxidative stress is not reduced.

"It looks like there's more truth to the cliché, 'slow and steady wins the race,' than we imagined," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This research suggests that if we just eat less, we may not have to suffer eating all that broccoli simply for its antioxidants."

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: Genetics energy metabolism oxidative stress

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>