Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Slight alterations in microRNA sequences hold more information than previously thought


MicroRNA isoforms show population-specific and gender-specific signatures -- a finding that could affect how researchers view and study microRNAs.

Researchers have encountered variants or isoforms in microRNAs (miRNAs) before, but assumed that these variants were accidental byproducts. A recent study, published in the journal Oncotarget this month, shows that certain so called isomiRs have abundances that depend on geographic subpopulations and gender and that the most prevalent variant of a given miRNA may not be the one typically listed in the public databases.

"This study shows that microRNA isoforms are much more common than we had previously assumed. The fact that some isoforms are shared by certain subpopulations or are more prominent in women than in men suggests that their presence likely serves a purpose and this warrants further study." says Isidore Rigoutsos, Director of the Center for Computational Medicine at Thomas Jefferson University (TJU).

MiRNAs are short non-coding RNAs approximately 22 nucleotides in length that were first discovered a little over 20 years ago. It was not long after their discovery that they began commanding the attention of many researchers worldwide thanks to their intimate involvement in many cellular events. We know now that miRNAs are regulators of protein-coding and also of non-protein-coding RNA transcripts and that they regulate the abundance of the affected transcripts, the miRNA "targets," in a sequence-dependent manner. What makes miRNAs so important is their involvement in fundamental processes such as development and homeostasis. Not surprisingly, miRNAs and their dysregulation have also being linked to many human conditions, diseases, and syndromes.

MiRNAs, just like the messenger RNAs that code for proteins, have "isoforms" i.e. variants that arise from the same genomic locus and differ from one another by only 1-2 letters at either their left or right terminus. Different variants of a given miRNA typically have different abundances compared to that of the 'representative' isoform of the locus which is also the one that is generally listed in the public databases.

For many years, miRNA isoforms had been thought of as inconsequential. However, the advent of next generation sequencing, or deep sequencing, is now enabling scientists to take a higher-resolution look at these molecular events.

A TJU team led by Rigoutsos analyzed deep sequencing data from lymphoblastoid cell lines (LCLs) derived from 452 men and women from five different population groups capturing four European and one African ancestries. The team discovered that the isomiRs in these LCLs exhibit expression profiles that are population-dependent and gender-dependent with differences existing even among the European populations. By analyzing independently obtained experimental data, the team was able to generate additional evidence showing that many of the isomiRs they identified could also associate with the Argonaute silencing complex, suggesting that these miRNA variants participate in the RNA interference pathway and have functional roles just like the 'representative' miRNA from the corresponding locus. What these functional roles are and how they differ for each variant is only beginning to be understood. Even though the TJU team worked with LCLs, Dr. Rigoutsos states that "one can reasonably assume that analogous observations likely hold true for other cell types as well."

The team's findings have several implications: For researchers they suggest that the assays currently in the market do not necessarily capture the variant that is prevalent in the cells with which a researcher works, instead measuring a less abundant isoform that is perhaps nonessential for the cell or tissue type at hand. The findings suggest that even cell lines from the same tissue could have more differences than they have similarities. For patients, the findings represent an opportunity for a potentially significant advantage: the knowledge that a given patient has a different molecular profile than another patient with the same disease is a very important piece of information that physicians can use to the patient's benefit when deciding which course of medical treatment to follow.


For more information, contact Edyta Zielinska, 215-955-5291,

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Thomas Jefferson University includes the Sidney Kimmel Medical College (SKMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, the Graduate School of Biomedical Sciences and the Jefferson Schools of Nursing, Pharmacy, Health Professions, and Population Health. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of SKMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!

Further reports about: RNA RNAs alterations databases differ differences miRNA miRNAs sequences

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>