Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slight alterations in microRNA sequences hold more information than previously thought

24.09.2014

MicroRNA isoforms show population-specific and gender-specific signatures -- a finding that could affect how researchers view and study microRNAs.

Researchers have encountered variants or isoforms in microRNAs (miRNAs) before, but assumed that these variants were accidental byproducts. A recent study, published in the journal Oncotarget this month, shows that certain so called isomiRs have abundances that depend on geographic subpopulations and gender and that the most prevalent variant of a given miRNA may not be the one typically listed in the public databases.

"This study shows that microRNA isoforms are much more common than we had previously assumed. The fact that some isoforms are shared by certain subpopulations or are more prominent in women than in men suggests that their presence likely serves a purpose and this warrants further study." says Isidore Rigoutsos, Director of the Center for Computational Medicine at Thomas Jefferson University (TJU).

MiRNAs are short non-coding RNAs approximately 22 nucleotides in length that were first discovered a little over 20 years ago. It was not long after their discovery that they began commanding the attention of many researchers worldwide thanks to their intimate involvement in many cellular events. We know now that miRNAs are regulators of protein-coding and also of non-protein-coding RNA transcripts and that they regulate the abundance of the affected transcripts, the miRNA "targets," in a sequence-dependent manner. What makes miRNAs so important is their involvement in fundamental processes such as development and homeostasis. Not surprisingly, miRNAs and their dysregulation have also being linked to many human conditions, diseases, and syndromes.

MiRNAs, just like the messenger RNAs that code for proteins, have "isoforms" i.e. variants that arise from the same genomic locus and differ from one another by only 1-2 letters at either their left or right terminus. Different variants of a given miRNA typically have different abundances compared to that of the 'representative' isoform of the locus which is also the one that is generally listed in the public databases.

For many years, miRNA isoforms had been thought of as inconsequential. However, the advent of next generation sequencing, or deep sequencing, is now enabling scientists to take a higher-resolution look at these molecular events.

A TJU team led by Rigoutsos analyzed deep sequencing data from lymphoblastoid cell lines (LCLs) derived from 452 men and women from five different population groups capturing four European and one African ancestries. The team discovered that the isomiRs in these LCLs exhibit expression profiles that are population-dependent and gender-dependent with differences existing even among the European populations. By analyzing independently obtained experimental data, the team was able to generate additional evidence showing that many of the isomiRs they identified could also associate with the Argonaute silencing complex, suggesting that these miRNA variants participate in the RNA interference pathway and have functional roles just like the 'representative' miRNA from the corresponding locus. What these functional roles are and how they differ for each variant is only beginning to be understood. Even though the TJU team worked with LCLs, Dr. Rigoutsos states that "one can reasonably assume that analogous observations likely hold true for other cell types as well."

The team's findings have several implications: For researchers they suggest that the assays currently in the market do not necessarily capture the variant that is prevalent in the cells with which a researcher works, instead measuring a less abundant isoform that is perhaps nonessential for the cell or tissue type at hand. The findings suggest that even cell lines from the same tissue could have more differences than they have similarities. For patients, the findings represent an opportunity for a potentially significant advantage: the knowledge that a given patient has a different molecular profile than another patient with the same disease is a very important piece of information that physicians can use to the patient's benefit when deciding which course of medical treatment to follow.

###

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Thomas Jefferson University includes the Sidney Kimmel Medical College (SKMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, the Graduate School of Biomedical Sciences and the Jefferson Schools of Nursing, Pharmacy, Health Professions, and Population Health. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of SKMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!

Further reports about: RNA RNAs alterations databases differ differences miRNA miRNAs sequences

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>