Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slicing Chromosomes Leads to New Insights Into Cell Division

02.06.2009
By using ultrafast laser pulses to slice off pieces of chromosomes and observe how the chromosomes behave, biomedical engineers at the University of Michigan have gained pivotal insights into mitosis, the process of cell division.

Their findings could help scientists better understand genetic diseases, aging and cancer.

Cells in plants, fungi, and animals—including those in the human body—divide through mitosis, during which the DNA-containing chromosomes separate between the resulting daughter cells. Forces in a structure called the mitotic spindle guide the replicated chromosomes to opposing sides as one cell eventually becomes two.

"Each cell needs the right number of chromosomes. It’s central to life in general and very important in terms of disease," said Alan Hunt, an associate professor in the Department of Biomedical Engineering and an author of a paper describing these findings published in Current Biology.

"One of the really important fundamental questions in biology is how do chromosomes get properly segregated when cells divide. What are the forces that move chromosomes around during this process? Where do they come from and what guides the movements?"

Hunt’s results validate the theory that "polar ejection forces" are at play. Scientists had hypothesized that the direction and magnitude of these forces might provide physical cues guiding chromosome movements. In this capacity, polar ejection forces would play a central role separating chromosomes in dividing cells, but no one had established a direct link until now.

Polar ejection forces are thought to arise out of the interaction between protein motors on the arms of chromosomes that push against cells’ microtubules. Microtubules are long, thin tubes that form a central component of the cytoskeleton and the mitotic spindle. They serve as intracellular structural supports and as railways along which molecular motors move cargoes such as chromosomes.

Hunt’s group hypothesized that polar ejection forces should be proportional to the chromosome’s size, and therefore could be predictably changed by altering the size of the chromosomes. Using newts as a model organism, they cut off pieces of the chromosomes’ arms.

"We asked what the relationship is between the size of the fragment we removed and the direction the chromosome moved," Hunt said. "Not only did we observe a relationship, we established that polar ejection forces were in fact a direct cue that guided chromosomal movements in mitosis."

To achieve this, Hunt performed "nanoscale surgery," as he calls it, taking advantage of the unprecedented precision of femtosecond pulses of laser light. A femtosecond is one billionth of one millionth of a second. The chromosomes he altered were only micrometers long, and the slices across the chromosomes were only nanometers thick. A nanometer is one-billionth of a meter, about a million times thinner than a human hair.

Understanding how chromosome guidance occurs allows scientists to determine how failures lead to genetic diseases, aging and cancer. When cells don’t properly divide, they usually die. But survival can cause cancer or aging-related disorders. Likewise, genetic diseases such as Down’s syndrome result from improper chromosome segregation.

Mitosis, Hunt says, is one of the most important targets of chemotherapy.

"By knowing how chromosomes move, we can better understand how these drugs interfere with those movements and we can design experiments to screen for new drugs," Hunt said. "It will also allow us to have a better handle on what makes these drugs work. There are a lot of drugs that interfere with mitosis, but only a few are good for cancer therapy."

The paper is called, "The Distribution of Polar Ejection Forces Determines the Amplitude of Chromosome Directional Instability." It is published in the May 26 print edition of Current Biology. This research is funded by the National Science Foundation, the National Institutes of Health and the Cellular Biotechnology Training Grant at the University of Michigan. Hunt is also an assistant research scientist in the U-M Institute of Gerontology, and director of the Biomedical Lab at the Center for Ultrafast Optical Sciences.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.engin.umich.edu

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>