Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep twitches light up the brain

30.09.2014

UI study finds twitches during sleep activate the brain in a unique way

A University of Iowa study has found twitches made during sleep activate the brains of mammals differently than movements made while awake.


UI graduate students Alexandre Tiriac, left, and Carlos Del Rio-Bermudez say the findings of their new study provide further evidence that newborns learn about their bodies by twitching in their sleep.

Researchers say the findings show twitches during rapid eye movement (REM) sleep comprise a different class of movement and provide further evidence that sleep twitches activate circuits throughout the developing brain. In this way, twitches teach newborns about their limbs and what they can do with them.

“Every time we move while awake, there is a mechanism in our brain that allows us to understand that it is we who made the movement,” says Alexandre Tiriac, a fifth-year graduate student in psychology at the UI and first author of the study, which appeared this month in the journal Current Biology. “But twitches seem to be different in that the brain is unaware that they are self-generated. And this difference between sleep and wake movements may be critical for how twitches, which are most frequent in early infancy, contribute to brain development.”

Mark Blumberg, a psychology professor at the UI and senior author of the study, says this latest discovery is further evidence that sleep twitches— whether in dogs, cats or humans—are connected to brain development, not dreams.

“Because twitches are so different from wake movements,” he says, “these data put another nail in the coffin of the ‘chasing rabbits’ interpretation of twitches.”

For this study, Blumberg, Tiriac and fellow graduate student Carlos Del Rio-Bermudez studied the brain activity of unanesthetized rats between 8 and 10 days of age. They measured the brain activity while the animals were awake and moving and again while the rats were in REM sleep and twitching.

What they discovered was puzzling, at first.

“We noticed there was a lot of brain activity during sleep movements but not when these animals were awake and moving,” Tiriac says.

The researchers theorized that sensations coming back from twitching limbs during REM sleep were being processed differently in the brain than awake movements because they lacked what is known as “corollary discharge.”

First introduced by researchers in 1950, corollary discharge is a split-second message sent to the brain that allows animals—including rats, crickets, humans and more—to recognize and filter out sensations generated from their own actions. This filtering of sensations is what allows animals to distinguish between sensations arising from their own movements and those from stimuli in the outside world.

So, when the UI researchers noticed an increase in brain activity while the newborn rats were twitching during REM sleep but not when the animals were awake and moving, they conducted several follow-up experiments to determine whether sleep twitching is a unique self-generated movement that is processed as if it lacks corollary discharge.

The experiments were consistent in supporting the idea that sensations arising from twitches are not filtered: And without the filtering provided by corollary discharge, the sensations generated by twitching limbs are free to activate the brain and teach the newborn brain about the structure and function of the limbs.

“If twitches were like wake movements, the signals arising from twitching limbs would be filtered out,” Blumberg says. “That they are not filtered out suggests again that twitches are special—perhaps special because they are needed to activate developing brain circuits.”

The UI researchers were initially surprised to find the filtering system functioning so early in development.

“But what surprised us even more,” Blumberg says, “was that corollary discharge appears to be suspended during sleep in association with twitching, a possibility that – to our knowledge – has never before been entertained.”

Contacts

Sara Agnew, Office of Strategic Communication, 319- 384-0073
Mark Blumberg, Department of Psychology, 319-335-2424

Sara Agnew | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/09/sleep-twitches-light-brain

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>