Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When it comes to sleep research, fruit flies and people make unlikely bedfellows

New article published in the journal Genetics shows that one of only a few drug targets for sleep disorders proves fruitful

You may never hear fruit flies snore, but rest assured that when you're asleep they are too. According to research published in the January 2009 issue of the journal GENETICS (, scientists from the University of Missouri-Kansas City have shown that the circadian rhythms (sleep/wake cycles) of fruit flies and vertebrates are regulated by some of the same "cellular machinery" as that of humans.

This study is significant because the sleep-regulating enzyme analyzed in this research is one of only a few possible drug targets for circadian problems that can lead to seasonal affective disorder (SAD), insomnia, and possibly some cancers.

"Modern society functions 24 hours a day and has produced more circadian problems than our ancestors ever faced," said Jeffrey Price, Ph.D., the senior scientist involved in the research. "I hope our work will allow us to better understand and alleviate these problems."

In addition to showing that this drug target has similar circadian functions in flies and humans, the study confirms that fruit flies are attractive and viable animal models for circadian research because their circadian "machinery" is remarkably similar to that in humans and they can be bred easily and rapidly. Moreover, this study provides compelling evidence that from an evolutionary point of view, circadian rhythms have been virtually unchanged since the days when humans and fruit flies shared a common ancestor.

Price and his colleagues made this discovery using a combination of biochemical and genetic approaches. For the biochemical approaches, normal and mutated versions of the fruit fly's sleep-regulating enzyme (DBT protein kinase) were expressed in insect cells and purified to determine how well each would work. The genetic approaches involved altering fruit flies to have the same sleep-altering gene mutations as vertebrates. The mutant proteins (either the fruit fly or vertebrate protein) were expressed in the fruit fly's circadian neurons and produced very similar effects on the fruit fly's circadian period.

"Every month our journal features articles that illustrate why creatures like fruit flies provide good models for studying human disease, and this article is an especially good example of that," said Mark Johnston, Ph.D., Editor-in-Chief of GENETICS. "These findings will help guide development of drugs that safely alter the sleep/wake cycle."

According to the Centers for Disease Control and Prevention, more than 25 percent of the U.S. population report not getting enough sleep on occasion, while almost 10 percent experience chronic insomnia. Insufficient sleep is associated with several diseases and conditions, such as diabetes, cardiovascular disease, obesity, and depression. It also is responsible for accidents that cause substantial injury and disability each year.

Tracey DePellegrin Connelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>