Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When it comes to sleep research, fruit flies and people make unlikely bedfellows

New article published in the journal Genetics shows that one of only a few drug targets for sleep disorders proves fruitful

You may never hear fruit flies snore, but rest assured that when you're asleep they are too. According to research published in the January 2009 issue of the journal GENETICS (, scientists from the University of Missouri-Kansas City have shown that the circadian rhythms (sleep/wake cycles) of fruit flies and vertebrates are regulated by some of the same "cellular machinery" as that of humans.

This study is significant because the sleep-regulating enzyme analyzed in this research is one of only a few possible drug targets for circadian problems that can lead to seasonal affective disorder (SAD), insomnia, and possibly some cancers.

"Modern society functions 24 hours a day and has produced more circadian problems than our ancestors ever faced," said Jeffrey Price, Ph.D., the senior scientist involved in the research. "I hope our work will allow us to better understand and alleviate these problems."

In addition to showing that this drug target has similar circadian functions in flies and humans, the study confirms that fruit flies are attractive and viable animal models for circadian research because their circadian "machinery" is remarkably similar to that in humans and they can be bred easily and rapidly. Moreover, this study provides compelling evidence that from an evolutionary point of view, circadian rhythms have been virtually unchanged since the days when humans and fruit flies shared a common ancestor.

Price and his colleagues made this discovery using a combination of biochemical and genetic approaches. For the biochemical approaches, normal and mutated versions of the fruit fly's sleep-regulating enzyme (DBT protein kinase) were expressed in insect cells and purified to determine how well each would work. The genetic approaches involved altering fruit flies to have the same sleep-altering gene mutations as vertebrates. The mutant proteins (either the fruit fly or vertebrate protein) were expressed in the fruit fly's circadian neurons and produced very similar effects on the fruit fly's circadian period.

"Every month our journal features articles that illustrate why creatures like fruit flies provide good models for studying human disease, and this article is an especially good example of that," said Mark Johnston, Ph.D., Editor-in-Chief of GENETICS. "These findings will help guide development of drugs that safely alter the sleep/wake cycle."

According to the Centers for Disease Control and Prevention, more than 25 percent of the U.S. population report not getting enough sleep on occasion, while almost 10 percent experience chronic insomnia. Insufficient sleep is associated with several diseases and conditions, such as diabetes, cardiovascular disease, obesity, and depression. It also is responsible for accidents that cause substantial injury and disability each year.

Tracey DePellegrin Connelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>