Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sleep-deprived bees have difficulty relearning

Sleep deprivation affects memory formation in bees

Everyone feels refreshed after a good night's sleep, but sleep does more than just rejuvenate, it can also consolidate memories. 'The rapid eye movement form of sleep and slow wave sleep are involved in cognitive forms of memory such as learning motor skills and consciously accessible memory', explains Randolf Menzel from the Freie Universtät Berlin, Germany.

According to Menzel, the concept that something during sleep reactivates a memory for consolidation is a basic theory in sleep research. However, the human brain is far too complex to begin dissecting the intricate neurocircuits that underpin our memories, which is why Menzel has spent the last four decades working with honey bees: they are easy to train, well motivated and it is possible to identify the miniaturised circuits that control specific behaviours in their tiny brains.

Intrigued by the role of sleep in memory consolidation and knowing that a bee is sleeping well when its antennae are relaxed and collapsed down, Menzel decided to focus on the role of sleep in one key memory characteristic: relearning. They publish their discovery that sleep derivation prevents bees from altering well-established memories in The Journal of Experimental Biology ay

The challenge that Menzel set the bees was to learn a new route home after being displaced from a familiar path. He and his colleague Lisa Beyaert provided a hive with a well-stocked feeder and trained the bees to visit the feeder and return home fully laden. Then, when the duo were convinced that the bees had memorized the routine, they cunningly intercepted the bees at the feeder and transported them to a new location before releasing the insects to find their way home. According to Menzel, foragers learn the general lay of the land as novices before specialising in a few well-travelled routes later in their careers. He explains that the displaced bees had to rely on their earlier experiences to learn their new way home. How would loss of sleep affect the bee's ability to learn the new route? To determine this, Menzel and Beyeart first had to check that the bees could learn the new route and that sleep deprivation hadn't made them too tired or altered their motivation to forage.

Teaming up with electrical engineer Uwe Greggers, Menzel kitted the bees out with tiny RADAR transponders; the RADAR technology was particularly demanding to operate. Tracking the insects' progress as they tried to learn the alternative route home, Menzel and his colleagues saw that by the second run home, the displaced bees had learned the new route. And when the trio disturbed the insects' sleep during the night before the initial displacement by shaking them awake every 5 minutes, they found that the bees were unfazed. In fact they didn't seem to need sleep to maintain their foraging energy levels and the foragers that were deprived of sleep before the first displacement run had no problems learning the new route home.

However, when the team disrupted the bees' sleep after they had allowed the bees a single run along the new displaced route, the lack of sleep played havoc with their memories on the following day. Fewer than half of the sleep-deprived foragers made it home successfully, and those that did took more than twice as long as bees that had enjoyed an uninterrupted night's sleep.

Sleep deprivation had dramatically affected the bees' ability to alter a well-established memory and the team is now keen to see whether they can identify characteristic activity patterns in the slumbering insects' brains that could represent memory formation.


REFERENCE: Beyaert, L., Greggers, U. and Menzel, R. (2012). Honeybees consolidate navigation memory during sleep. J. Exp. Biol. 215, 3981-3988

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>