Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sleep cycle discovery explains why fatty diets during pregnancy make kids obese

23.11.2010
New research in the FASEB Journal suggests that a fetal liver gene called Npas2 is a key regulator of the circadian system with a significant metabolic response as a result of a mother's high-fat diet

The link between sleeping and obesity is drawn tighter as a new research published online in the FASEB Journal (http://www.fasebj.org/content/early/2010/11/19/fj.10-172080.abstract) study shows that what your mother ate when she was pregnant may make you obese or overweight by altering the function of genes (epigenetic changes) that regulate circadian rhythm. In the report, pregnant primate females consuming a high-fat diet altered the function of fetal genes that regulate circadian rhythm (including appetite and food intake) during development. The offspring also had non-alcoholic fatty liver disease.

"It is our hope that our studies will continue to guide research aimed at understanding the pivotal role that maternal health plays in guiding the health of the next generation," said Kjersti Aagaard-Tillery, M.D., Ph.D., a researcher involved in the work from the Department of Obstetrics and Gynecology at Baylor College of Medicine in Houston. "We are enthusiastic that our research will give hope that even small changes, such as improving one's diet in pregnancy and during breastfeeding, will translate into a lower chance for obesity in our next generation."

To make this discovery, Aagaard-Tillery and colleagues studied three groups of Japanese macaque primates. One group was fed a 12 percent fat diet (the control group). The second group was fed a 35 percent fat or high-fat diet and the third group was fed the high-fat diet for up to five years and then switched back to the control diet. Each group maintained their specific diet prior to conception and throughout pregnancy. Offspring from the high-fat group developed non-alcoholic fatty liver disease; experienced changes in histones (the core set of proteins which DNA wrap around), and had altered metabolic profiles and circadian rhythms. Results also showed that the genes in the fetal liver, which are responsible for orchestrating circadian rhythms with appetite and food intake, are altered in offspring from the mothers on the high-fat diet. Specifically, one of these genes, called Npas2, is a key regulator of the circadian system and is itself regulated by changes in the fetal histone code. Scientists found that improving the diet, either for the pregnant or breastfeeding mother, or for the infant after birth, helps to partially restore the circadian machinery back to normal, possibly lessening the risk of childhood diseases related to obesity.

"We've recently published a number of studies in the FASEB Journal showing that what a mother eats affects the weight of her children for their entire lives," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "Now, we know why, and what a wake-up call for pregnant women! The mother's diet during pregnancy affects their children's sleep machinery via genetic machinery that controls the sleep cycle. Children are literally forced to sleep in the proverbial bed their mothers have made."

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Melissa Suter, Philip Bocock, Lori Showalter, Min Hu, Cynthia Shope, Robert McKnight, Kevin Grove, Robert Lane, and Kjersti Aagaard-Tillery
Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates

FASEB J. doi:10.1096/fj.10-172080 ; http://www.fasebj.org/content/early/2010/11/19/fj.10-172080.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>