Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleator lab identifies single point mutation in Listeria monocytogenes

13.03.2013
The bacterial foodborne pathogen, Listeria monocytogenes is the causative agent of listeriosis—a debilitating disease linked with ~2,500 illnesses and more than 500 deaths per annum in the US alone.

A characteristic feature of L. monocytogenes is its ability to grow at refrigeration temperatures and in the presence of high concentrations of salt—traditional food preservation techniques, which arrest the growth of most other pathogens.

Work in the Sleator lab has shown that the bacterium protects itself from such stresses by twisting into a protective corkscrew type shape in an effort to reduce its exposure to the stress—in the same way a human might wrap up tight—hugging the core to reduce the effects of the cold.

Furthermore, Sleator and colleagues have identified a single point mutation (out of a total of 3 million or so nucleotides that constitute the entire listerial genome), which dramatically improves the growth of the pathogen in the refrigerator.

The research paper, "A single point mutation in the listerial betL óA-dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity," will be published in the November/December 2013 issue of Bioengineered. It is available open access ahead of press: http://www.landesbioscience.com/journals/bioe/article/24094/

Sleator claims that this mutation represents "a double edged sword;" "from a food safety perspective, a single point mutation with the potential to induce such dramatic shifts in cell growth and survival at low temperatures—making an already dangerous pathogen even more formidable—raises significant food-safety concerns which need to be addressed." However, from a synthetic biology point of view, such a boosted-stress resistance gene represents a useful BioBrick (or building block) for the design of more physiologically robust probiotics or, indeed, plants that are more resistant to cold arid conditions.

Published by Landes Bioscience since 2010, Bioengineered publishes relevant and high-impact original research with a special focus on genetic engineering that involves the generation of recombinant strains and their metabolic products for beneficial applications in food, medicine, industry, environment and bio-defense. Established in 2002, Landes Bioscience is an Austin, Texas-based publisher of biology research journals and books. For more information on Landes Bioscience, please visit http://www.landesbioscience.com/.

Andrew Thompson | EurekAlert!
Further information:
http://www.landesbioscience.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>