Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Skin-like Tissue Developed from Human Embryonic Stem Cells

Dental and tissue engineering researchers at Tufts University School of Dental Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have harnessed the pluripotency of human embryonic stem cells (hESC) to generate complex, multilayer tissues that mimic human skin and the oral mucosa (the moist tissue that lines the inside of the mouth). The proof-of-concept study is published online in advance of print in Tissue Engineering Part A.

“For the first time, we have established that a single source of hESC can provide the multiple cell types needed to interact within a three-dimensional tissue model to generate complex, multilayer tissues.

We are a step closer to a practical therapy to help with diseases of the skin and mouth,” said Jonathan Garlick, DDS, PhD, professor of oral and maxillofacial pathology at Tufts University School of Dental Medicine and a member of the cell, molecular & developmental biology program faculty at the Sackler School of Biomedical Sciences at Tufts.

“Researchers have been seeking methods to grow skin-like tissues outside of the body using new sources of stem cells such as hESC, with the goal of advancing regenerative medicine as a new therapy to replace or repair damaged or diseased tissue. Little is known about how hESC can be developed into the multilayer tissues similar to those that line the gums, cheeks, lips, and other areas in the mouth. We used in vitro tissue engineering techniques to produce skin-like tissues that mimic the lining tissues found in the oral cavity,” said Garlick.

Using a combination of chemical nutrients and specialized surfaces for cell attachment, an hES cell line (H9) was directed to form two distinct specialized cell populations. The first population forms the surface layer (ectodermal, the precursor to epithelial tissue), while the second is found beneath the surface layer (mesenchymal).

Following the isolation and characterization of these cell populations, the researchers incorporated them into an engineered, three-dimensional tissue system where they were grown at an air-liquid interface to mimic their growth environment in the oral cavity. Within two weeks, tissues developed that were similar in structure to those constructed using mature cells derived from newborn skin, which are the current gold standard for tissue fabrication.

“These engineered tissues are remarkably similar to their human counterparts and can be used to address major concerns facing the field of stem cell biology that are related to their clinical use. We can now use these engineered tissues as ‘tissue surrogates’ to begin to predict how stable and safe hESC-derived cells will be after therapeutic transplantation. Our goal is to produce functional tissues to treat oral and skin conditions, like the early stages of cancer and inflammatory disease, as well as to accelerate the healing of recalcitrant wounds,” said Garlick.

First author Kyle Hewitt is a graduate student in cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Science at Tufts and is a member of Garlick’s lab.

This study was supported by the National Institute of Dental and Craniofacial Research at the National Institutes of Health.

Garlick is also director of the Center for Integrated Tissue Engineering (CITE) at Tufts University School of Dental Medicine, which is dedicated to furthering the understanding of regenerative medicine through the investigation of three-dimensional tissue models. He has written more than over 60 articles and book chapters on this and related subjects. CITE is now using hESC as a pre-clinical paradigm that now serves as as a translational modality to provide more meaningful correlations between in vitro screening assays for toxicity and efficacy and in vivo tissue outcomes in human clinical trials.

Hewitt K, Shamis Y, Carlson M, Aberdam E, Aberdam D, and Garlick J. Tissue Engineering Part A. “Three-dimensional epithelial tissues generated from human embryonic stem cells.” Published online July 6, 2009 in advance of print, doi: 10.1089/ten.tea.2009.0060

About Tufts University School of Dental Medicine Founded in 1868, Tufts University School of Dental Medicine (TUSDM) is committed to leadership in education, patient care, research and community service. Students obtain an interdisciplinary education, integrated with medicine, with access to training in dental specialties. Clinics managed at TUSDM provide quality comprehensive care to more than 18,000 diverse individuals annually, including those requiring special needs. Nationally and internationally, the School promotes health and educational programs and researches new procedures, materials and technologies to improve oral health.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Dental Medicine or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>