Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin-like Tissue Developed from Human Embryonic Stem Cells

23.07.2009
Dental and tissue engineering researchers at Tufts University School of Dental Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have harnessed the pluripotency of human embryonic stem cells (hESC) to generate complex, multilayer tissues that mimic human skin and the oral mucosa (the moist tissue that lines the inside of the mouth). The proof-of-concept study is published online in advance of print in Tissue Engineering Part A.

“For the first time, we have established that a single source of hESC can provide the multiple cell types needed to interact within a three-dimensional tissue model to generate complex, multilayer tissues.

We are a step closer to a practical therapy to help with diseases of the skin and mouth,” said Jonathan Garlick, DDS, PhD, professor of oral and maxillofacial pathology at Tufts University School of Dental Medicine and a member of the cell, molecular & developmental biology program faculty at the Sackler School of Biomedical Sciences at Tufts.

“Researchers have been seeking methods to grow skin-like tissues outside of the body using new sources of stem cells such as hESC, with the goal of advancing regenerative medicine as a new therapy to replace or repair damaged or diseased tissue. Little is known about how hESC can be developed into the multilayer tissues similar to those that line the gums, cheeks, lips, and other areas in the mouth. We used in vitro tissue engineering techniques to produce skin-like tissues that mimic the lining tissues found in the oral cavity,” said Garlick.

Using a combination of chemical nutrients and specialized surfaces for cell attachment, an hES cell line (H9) was directed to form two distinct specialized cell populations. The first population forms the surface layer (ectodermal, the precursor to epithelial tissue), while the second is found beneath the surface layer (mesenchymal).

Following the isolation and characterization of these cell populations, the researchers incorporated them into an engineered, three-dimensional tissue system where they were grown at an air-liquid interface to mimic their growth environment in the oral cavity. Within two weeks, tissues developed that were similar in structure to those constructed using mature cells derived from newborn skin, which are the current gold standard for tissue fabrication.

“These engineered tissues are remarkably similar to their human counterparts and can be used to address major concerns facing the field of stem cell biology that are related to their clinical use. We can now use these engineered tissues as ‘tissue surrogates’ to begin to predict how stable and safe hESC-derived cells will be after therapeutic transplantation. Our goal is to produce functional tissues to treat oral and skin conditions, like the early stages of cancer and inflammatory disease, as well as to accelerate the healing of recalcitrant wounds,” said Garlick.

First author Kyle Hewitt is a graduate student in cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Science at Tufts and is a member of Garlick’s lab.

This study was supported by the National Institute of Dental and Craniofacial Research at the National Institutes of Health.

Garlick is also director of the Center for Integrated Tissue Engineering (CITE) at Tufts University School of Dental Medicine, which is dedicated to furthering the understanding of regenerative medicine through the investigation of three-dimensional tissue models. He has written more than over 60 articles and book chapters on this and related subjects. CITE is now using hESC as a pre-clinical paradigm that now serves as as a translational modality to provide more meaningful correlations between in vitro screening assays for toxicity and efficacy and in vivo tissue outcomes in human clinical trials.

Hewitt K, Shamis Y, Carlson M, Aberdam E, Aberdam D, and Garlick J. Tissue Engineering Part A. “Three-dimensional epithelial tissues generated from human embryonic stem cells.” Published online July 6, 2009 in advance of print, doi: 10.1089/ten.tea.2009.0060

About Tufts University School of Dental Medicine Founded in 1868, Tufts University School of Dental Medicine (TUSDM) is committed to leadership in education, patient care, research and community service. Students obtain an interdisciplinary education, integrated with medicine, with access to training in dental specialties. Clinics managed at TUSDM provide quality comprehensive care to more than 18,000 diverse individuals annually, including those requiring special needs. Nationally and internationally, the School promotes health and educational programs and researches new procedures, materials and technologies to improve oral health.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Dental Medicine or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>