Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin, soft tissue infections succumb to blue light

29.01.2013
Blue light can selectively eradicate Pseudomonas aeruginosa infections of the skin and soft tissues, while preserving the outermost layer of skin, according to a proof-of-principle study led by Michael R. Hamblin of the Massachusetts General Hospital, and the Harvard Medical School, Boston. The research is published online ahead of print in the journal Antimicrobial Agents and Chemotherapy

"Blue light is a potential non-toxic, non-antibiotic approach for treating skin and soft tissue infections, especially those caused by antibiotic resistant pathogens," says Hamblin.

In the study, animal models were infected with P. aeruginosa. All of the animals in the group treated with blue light survived, while in the control, 82 percent (9 out of 11) of the animals died.

Skin and soft tissue infections are the second most common bacterial infections encountered in clinical practice, and represent the most common infection presentation—more than 3 percent—in patients visiting emergency departments, says Hamblin. The prevalence of skin and soft tissue infections among hospitalized patients is 10 percent, with approximately 14.2 million ambulatory care visits every year and an annual associated medical cost of almost $24 billion (equivalent to $76 for every American), says Hamblin.

Treatment of skin and soft tissue infections has been significantly complicated by the explosion of antibiotic resistance, which may bring an end to what medical scientists refer to as the antibiotic era, says Hamblin. "Microbes replicate very rapidly, and a mutation that helps a microbe survive in the presence of an antibiotic drug will quickly predominate throughout the microbial population. Recently, a dangerous new enzyme, NDM-1, that makes some bacteria resistant to almost all antibiotics available has been found in the United States. Many physicians are concerned that several infections soon may be untreatable."

Besides harming public health, antibiotic resistance boosts health care costs. "Treating resistant skin and soft tissue infections often requires the use of more expensive, or more toxic drugs, and can result in longer hospital stays for infected patients," says Hamblin.

A copy of the manuscript can be found online at http://bit.ly/asmtip0113b. Formal publication of the paper is scheduled for the March 2013 issue of Antimicrobial Agents and Chemotherapy.

(T. Dai, A. Gupta, Y.-Y. Huang, R. Yin, C.K. Murray, M.S. Vrahas, M. Sherwood, G.P. Tegos, and M.R. Hamblin, 2013. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antim. Agents Chemother. Published ahead of print 21 December 2012 ,doi:10.1128/AAC.01652-12)

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>