Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not Only Skin Deep: Penn Study on Skin Formation Suggests Strategies to Fight Skin Cancer

07.12.2010
In a study published in the journal Developmental Cell, Sarah Millar PhD, professor of Dermatology and Cell & Developmental Biology at the University of Pennsylvania School of Medicine, and colleagues demonstrate that a pair of enzymes called HDACs are critical to the proper formation of mammalian skin.

The findings, Millar says, not only provide information about the molecular processes underlying skin development, they also suggest a potential anticancer strategy. "Inhibition of these HDAC enzymes might be able to shut down the growth of tumors that contain cells resembling those in embryonic skin,” she says.

Acting as a barrier to infection and dehydration, the outermost layer of the skin, called the epidermis, is a stratified structure in which progenitor stem cells in the bottommost layer continuously divide to replenish the cells in the upper layers that are lost as skin cells slough off. The origin of this structure is a single cell layer called surface ectoderm that covers vertebrate embryos.

Millar's team is interested in how surface ectoderm becomes epidermis. They decided to focus on enzymes that control gene expression by regulating the accessibility of chromatin - the DNA and protein structure in which genes reside. Within the chromatin, DNA is wound around proteins known as histones. The degree of compaction of this structure influences whether or not genes are expressed. Genes in tightly wound chromatin areas are generally inaccessible and suppressed, whereas those in “open” or loosely packed areas can be activated.

HDACs remove chemical modifications known as acetyl groups from histones, resulting in a compact and repressive chromatin environment. Previous evidence had suggested a possible role for histone acetylation in regulating epidermal development, but its exact functions were unclear.

Skin Essentials

Penn MD/PhD student Matthew LeBoeuf, the lead author of the study, deleted the genes for two HDACs in the embryonic surface ectoderm of mice, and found that in the absence of both HDAC1 and HDAC2, the epidermis fails to differentiate and the embryos die at birth. “These deacetylation enzymes, which usually act to compact the chromatin in particular regions, are absolutely essential for the skin to develop," Millar explains.

When they examined these mutant mice, Millar’s team found that in addition to defective epidermis, the embryos also failed to develop hair follicles, tongue papillae, eyelids, and teeth – a constellation of defects that was reminiscent of deletion of another gene, called p63.

p63 is a transcription factor – a protein that activates or represses the expression of other genes. In this case, p63 is a kind of epidermal master regulator; its job is to ensure the formation of epidermis. When LeBoeuf examined the expression of known p63 targets, he found that those genes that are activated by p63 exhibit normal expression in HDAC mutant embryos, whereas those that are normally repressed by p63 do not. He also found that HDACs associate with regulatory sequences upstream of p63-suppressed genes, and are in fact active there; histone proteins from those regions are more heavily acetylated in keratinocytes treated with an HDAC inhibitor than in control-treated keratinocytes.

So, how does HDAC mutation lead to failure of epidermal development? As Millar explains, the genes that normally are repressed by p63 act to suppress cell division and induce cell aging. In HDAC mutants (as well as in p63 mutants), these cell division inhibitory proteins become active, stifling epidermal development by shutting down the division and self-renewal of the progenitor cell layer. "Normally, it's really important that p63 shuts down these genes," Millar says. "If it's not doing that, then the skin can't develop."

Molecular Yin and Yang

Exacerbating that problem, her team determined that HDACs also normally act to inhibit the activity of a p63-related protein called p53. p53 is the yin to p63's yang: it normally enhances the expression of proteins that suppress cell division and induce aging.

Thus, the net effect of HDAC deletion in these mice is to both prevent repression of embryonic genes that dampen stem cell proliferation, and also to actively enhance their expression.

According to Millar, these findings suggest the possibility that HDAC inhibitors – already in clinical trials for a variety of tumors - may be useful therapeutics in the fight against certain skin cancers that are characterized by the presence of undifferentiated, embryonic-like cells. She stresses, however, that experiments on tumors were not performed in the current study. "This is more of a future direction," she says, "something our results imply."

Other authors include Anne Terrell, Sohum Trivedi, Jonathan Epstein, and Edward Morrisey at Penn; Satrajit Sinha of the State University of New York, Buffalo; and Eric Olson of the University of Texas Southwestern Medical Center, Dallas.

Dr. Millar's research is funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Institute of Dental and Craniofacial Research, and the National Institute of Child Health and Human Development.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Cancer DNA Deep HDAC LeBoeuf cell death cell division hair follicle molecular process skin skin cell

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>