Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin deep

09.02.2012
Teeth-like denticles play key role in helping sharks swim, research shows

For swimmers looking to gain an edge on the competition, the notion that simply donning a different swimsuit – like a Speedo Fastskin II suit, with a surface purportedly designed to mimic by shark skin – can be the difference between first and last place is a powerful one.

It's also one that's almost completely misplaced, said George Lauder, the Henry Bryant Bigelow Professor of Ichthyology.

Experiments conducted in Lauder's lab, and described in the Feb. 2 issue of The Journal of Experimental Biology, reveal that, while sharks' sandpaper-like skin does allow the animals to swim faster and more efficiently, the surface of the high-tech swimsuits has no effect when it comes to reducing drag as swimmers move through the water.

"In fact, it's nothing like shark skin at all," Lauder said, of the swimsuit material. "What we have shown conclusively is that the surface properties themselves, which the manufacturer has in the past claimed to be bio-mimetic, don't do anything for propulsion."

That's not to say that the suits as a whole do nothing to improve performance.

"There are all sorts of effects at work that aren't due to the surface," Lauder said. "Swimmers who wear these suits are squeezed into them extremely tightly, so they are very streamlined. They're so tight could actually change your circulation, and increase the venous return to the body, and they are tailored to make it easier to maintain proper posture even when tired. I'm convinced they work, but it's not because of the surface."

By comparison, Lauder said, the research showed that the millions of denticles – tiny, tooth-like structures – that make up shark skin have a dramatic effect on how the animals swim by both reducing drag and increasing thrust.

"What we found is that as the shark skin membrane moves, there is a separation of flow – the denticles create a low-pressure zone, called a leading-edge vortex, as the water moves over the skin," he said. "You can imagine this low-pressure area as sucking you forward. The denticles enhance this leading-edge vortex, so my hypothesis is that these structures that make up shark skin reduce drag, but I also believe them to be thrust enhancing."

Importantly, however, the phenomenon was only found when the skin was attached to a flexible membrane. When placed on a rigid structure, no increases in swimming speed were seen.

"In life, sharks are very flexible. Even hammerheads and large ocean sharks are quite flexible," Lauder said. "If you watch a shark swim, the head does not move very much, so it could be that the denticles on the head are mostly reducing drag, but those on the tail are enhancing thrust, but we don't know what that balance may be. Ultimately, though, one of the key messages of this paper is that shark skin needs to be studied when they're moving, which hadn't been done before."

Studying how shark's skin helps them move through the water, however, is no easy proposition, and one that, for obvious reasons, can't be done using live animals.

To perform the tests, Lauder and his team obtained samples of the skin of two different shark species – mako and porbeagle sharks – and tested them alongside two other materials, the high-tech swimsuits and a material that featured tiny grooves, or "riblets", which has been explored as a way to cut fuel consumption on aircraft and reduce drag on sailboats.

To conduct the tests, each of the materials was mounted on two forms – one a rigid, wing-like structure and the other a flexible membrane. Each was then attached to a robotic arm mounted on a low-friction device suspended over a recirculating tank. To measure the speed at which the apparatus "swims," researchers turned up the flow in the tank until the device returned to its starting point.

Understanding how water flowed over each material, however, was trickier.

To get at the problem, Lauder and his team relied on a technique called particle image velocimetry which uses a laser to illuminate millions of reflective particles in the water. Using a high speed camera that records at up to 1,000 frames per second, researchers can observe how the particles move and observe where and when vortices form.

"I've thought for years that the literature on shark skin needed an upgrade," Lauder said, explaining his motivation for the research. "Once we got going, I thought it would be fun to look at the Speedo materials because we don't have a lot of quantitative information on the effect of surface structure.

"Going forward, we want to try to image the flow as close to the surface as we can reasonably get," he continued. "The other direction we are exploring is to make an artificial shark skin and then manipulate it – delete every other denticle, make them twice as large, or change the spacing – and see what effects that may have."

Funding for the research was provided by the National Science Foundation.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Speedo Fastskin II suit Teeth-like denticles sharks swim skin

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>