Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin deep

09.02.2012
Teeth-like denticles play key role in helping sharks swim, research shows

For swimmers looking to gain an edge on the competition, the notion that simply donning a different swimsuit – like a Speedo Fastskin II suit, with a surface purportedly designed to mimic by shark skin – can be the difference between first and last place is a powerful one.

It's also one that's almost completely misplaced, said George Lauder, the Henry Bryant Bigelow Professor of Ichthyology.

Experiments conducted in Lauder's lab, and described in the Feb. 2 issue of The Journal of Experimental Biology, reveal that, while sharks' sandpaper-like skin does allow the animals to swim faster and more efficiently, the surface of the high-tech swimsuits has no effect when it comes to reducing drag as swimmers move through the water.

"In fact, it's nothing like shark skin at all," Lauder said, of the swimsuit material. "What we have shown conclusively is that the surface properties themselves, which the manufacturer has in the past claimed to be bio-mimetic, don't do anything for propulsion."

That's not to say that the suits as a whole do nothing to improve performance.

"There are all sorts of effects at work that aren't due to the surface," Lauder said. "Swimmers who wear these suits are squeezed into them extremely tightly, so they are very streamlined. They're so tight could actually change your circulation, and increase the venous return to the body, and they are tailored to make it easier to maintain proper posture even when tired. I'm convinced they work, but it's not because of the surface."

By comparison, Lauder said, the research showed that the millions of denticles – tiny, tooth-like structures – that make up shark skin have a dramatic effect on how the animals swim by both reducing drag and increasing thrust.

"What we found is that as the shark skin membrane moves, there is a separation of flow – the denticles create a low-pressure zone, called a leading-edge vortex, as the water moves over the skin," he said. "You can imagine this low-pressure area as sucking you forward. The denticles enhance this leading-edge vortex, so my hypothesis is that these structures that make up shark skin reduce drag, but I also believe them to be thrust enhancing."

Importantly, however, the phenomenon was only found when the skin was attached to a flexible membrane. When placed on a rigid structure, no increases in swimming speed were seen.

"In life, sharks are very flexible. Even hammerheads and large ocean sharks are quite flexible," Lauder said. "If you watch a shark swim, the head does not move very much, so it could be that the denticles on the head are mostly reducing drag, but those on the tail are enhancing thrust, but we don't know what that balance may be. Ultimately, though, one of the key messages of this paper is that shark skin needs to be studied when they're moving, which hadn't been done before."

Studying how shark's skin helps them move through the water, however, is no easy proposition, and one that, for obvious reasons, can't be done using live animals.

To perform the tests, Lauder and his team obtained samples of the skin of two different shark species – mako and porbeagle sharks – and tested them alongside two other materials, the high-tech swimsuits and a material that featured tiny grooves, or "riblets", which has been explored as a way to cut fuel consumption on aircraft and reduce drag on sailboats.

To conduct the tests, each of the materials was mounted on two forms – one a rigid, wing-like structure and the other a flexible membrane. Each was then attached to a robotic arm mounted on a low-friction device suspended over a recirculating tank. To measure the speed at which the apparatus "swims," researchers turned up the flow in the tank until the device returned to its starting point.

Understanding how water flowed over each material, however, was trickier.

To get at the problem, Lauder and his team relied on a technique called particle image velocimetry which uses a laser to illuminate millions of reflective particles in the water. Using a high speed camera that records at up to 1,000 frames per second, researchers can observe how the particles move and observe where and when vortices form.

"I've thought for years that the literature on shark skin needed an upgrade," Lauder said, explaining his motivation for the research. "Once we got going, I thought it would be fun to look at the Speedo materials because we don't have a lot of quantitative information on the effect of surface structure.

"Going forward, we want to try to image the flow as close to the surface as we can reasonably get," he continued. "The other direction we are exploring is to make an artificial shark skin and then manipulate it – delete every other denticle, make them twice as large, or change the spacing – and see what effects that may have."

Funding for the research was provided by the National Science Foundation.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Speedo Fastskin II suit Teeth-like denticles sharks swim skin

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>