Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Skin cells reveal DNA's genetic mosaic

The prevailing wisdom has been that every cell in the body contains identical DNA.

However, a new study of stem cells derived from the skin has found that genetic variations are widespread in the body's tissues, a finding with profound implications for genetic screening, according to Yale School of Medicine researchers.

Published in the Nov. 18 issue of Nature, the study paves the way for assessing the extent of gene variation, and for better understanding human development and disease.

"We found that humans are made up of a mosaic of cells with different genomes," said lead author Flora Vaccarino, M.D., the Harris Professor of Child Psychiatry at the Yale Child Study Center. "We saw that 30 percent of skin cells harbor copy number variations (CNV), which are segments of DNA that are deleted or duplicated. Previously it was assumed that these variations only occurred in cases of disease, such as cancer. The mosaic that we've seen in the skin could also be found in the blood, in the brain, and in other parts of the human body."

The longstanding belief has been that our cells have the same DNA sequence and this blueprint governs the body's functions. The Yale team's research challenges this dogma. Some scientists have hypothesized that during development, when DNA is copied from mother to daughter cells, there could be deletions, duplications and changes in the sequence of the DNA, and an entire group of genes could be affected. This premise has been incredibly difficult to test, but Vaccarino and colleagues have done so in this new study.

The team used whole genome sequencing to study induced pluripotent stem cells lines (iPS), which are stem cells developed from a mature-differentiated cell. The team grew cells taken from the inner upper arms of two families. The team spent two years characterizing these iPS cell lines and comparing them to the original skin cells.

While observing that the genome of iPS cells closely resembles the genome of skin cells from which they originated, the team could identify several deletions or duplications involving thousands of base pairs of DNA. The team then performed additional experiments to understand the origin of those differences, and showed that at least half of them pre-existed in small fractions of skin cells. These differences were revealed in iPS cells because each iPS line is derived from one, or very few, skin cells. Vaccarino said these iPS lines could act as a magnifying glass to see the mosaic of genomic differences in the body's cells.

"In the skin, this mosaicism is extensive and at least 30 percent of skin cells harbor different deletion or duplication of DNA, each found in a small percentage of cells," said Vaccarino. "The observation of somatic mosaicism has far-reaching consequences for genetic analyses, which currently use only blood samples. When we look at the blood DNA, it's not exactly reflecting the DNA of other tissues such as the brain. There could be mutations that we're missing."

"These findings are shaping our future studies, and we're doing more studies of the developing brains of animals and humans to see if this variation exists there as well," Vaccarino added.

Vaccarino worked with a team of researchers from several laboratories, including those of Mark Gerstein, Sherman Weissman, Alexander Eckehart Urban, working together under the auspices of the Program in Neurodevelopment and Regeneration. Other authors on the study include Alexej Abyzov, Jessica Mariani, Dean Palejev, Ying Zhang, Michael Seamus Haney, Livia Tomasini, Anthony Ferrandino, Lior A. Rosenberg Belmaker, Anna Szekely, Michael Wilson, Arif Kocabas, Nathaniel E. Calixto, Elena L. Grigorenko, Anita Huttner, and Katarzyna Chawarska.

The study was funded by NIH/NIMH, the Simons Foundation, and the State of Connecticut.

Citation: Nature doi:10.1038/nature11629

Karen N. Peart | EurekAlert!
Further information:

Further reports about: DNA Nature Immunology blood sample genetic variation iPS cells skin cell stem cells

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>