Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Help for the skin

First the skin blisters. The blisters burst and leave behind sore spots - true gateways for infectious agents. The disease referred to is called pemphigus and can be life-threatening if left untreated. Scientists of the University of Würzburg have made progress in its research.

With pemphigus, the immune system attacks the organism: It attacks a group of proteins that is necessary for the cohesion of skin cells with antibodies. The usually tight cell structure dissolves, cavities that fill with fluids develop in the skin. Thin-walled blisters form out of this.

"The most dangerous thing about this disease is that it destroys the skin's barrier function", says Jens Waschke, Professor for Anatomy. The body threatens to desiccate, furthermore, dangerous bacteria can enter and cause blood poisoning.

The rare disease mostly affects people between 40 and 70: About 80 cases are recorded in Germany per year. The chronic condition is currently being treated with cortisone and other drugs that suppress the immune system. "This, however, leads to sometimes severe side effects that justify the search for new therapies", thinks the professor.

Damaging effects of antibodies diminished

Fighting the dangerous antibodies in the patient's organism: In the Journal of Biological Chemistry, Waschke, his colleague Detlev Drenckhahn and further researchers from Würzburg describe how this could work in principle.

The team was able to significantly reduce the damaging effects of the antibodies in cell cultures. This was accomplished with small, protein-like molecules (peptides) that were constructed specifically for this purpose: They lower the degree in which the skin cells break apart under the influence of the antibodies by about half.

Next, the scientists have to test if this positive effect can also be achieved in living skin tissue. Should additional studies succeed, they possibly show the way to a new therapy against pemphigus. "We cannot administer the peptides themselves to humans because they could possibly cause immune reactions", explains Jens Waschke. Instead, a molecule has to be discovered that is structurally similar to the peptides and also has a similarly positive effect.

Pemphigus as a model disease

The researchers in Würzburg do not only focus on new therapies against the disease. They also want to gain fundamental insights. "Pemphigus is an important model to study which role antibodies play in the development of autoimmune diseases", says Jens Waschke. "Furthermore, we use the antibodies as tools to research the structure and regulation of contacts between cells."

Waschke emphasises that the interdisciplinary cooperation in the Special Research Area 487 in Würzburg is jointly responsible for the success of the research. Through computer modelling, biophysicist Thomas Müller figured out which structures the peptides must have to be effective. Chemist Athina Efthymiadis synthesized the peptides, biomedical scientist Wolfgang-Moritz Heupel carried out the experiments with an atomic force microscope.

Enno Schmidt from the dermatology clinic, who has transferred to Lübeck in the meantime, acted as the link to the medical area: He isolated the damaging antibodies from the blood of a pemphigus patient.

Peptides Targeting the Desmoglein 3 Adhesive Interface Prevent Autoantibody-induced Acantholysis in Pemphigus; Wolfgang-Moritz Heupel, Thomas Müller, Athina Efthymiadis, Enno Schmidt, Detlev Drenckhahn, and Jens Waschke. The Journal of Biological Chemistry, Vol. 285, No. 13, pp 8589-8595, March 27, 2009, DOI 10.1074/jbc.M808813200

For further information

Professor Jens Waschke, ++49 (931) 31-2707,

Robert Emmerich | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>