Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size and Age of Plants Impact Their Productivity More Than Climate, UA Study Shows

24.07.2014

The size and age of plants have more of an impact on their productivity than temperature and precipitation, according to a landmark study by University of Arizona researchers.

UA professor Brian Enquist and postdoctoral researcher Sean Michaletz, along with collaborators Dongliang Cheng from Fujian Normal University in China and Drew Kerkhoff from Kenyon College in Gambier, Ohio, have combined a new mathematical theory with data from more than 1,000 forests across the world to show that climate has a relatively minor direct effect on net primary productivity, or the amount of biomass – wood or any other plant materials – that plants produce by harvesting sunlight, water and carbon dioxide. 

The findings were made available as an advance online publication by the journal Nature on Sunday​. 

"A fundamental assumption of our models for understanding how climate influences the functioning of ecosystems is that temperature and precipitation directly influence how fast plants can take up and use carbon dioxide," said Enquist, a professor in the UA Department of Ecology and Evolutionary Biology, whose research lab led the study.

"Essentially, warm and wet environments are thought to allow plant metabolism to run fast, while cold and drier environments slow down metabolism and hence lower biomass production in ecosystems," he said. "This assumption makes sense, as we know from countless experiments that temperature and water control how fast plants can grow. However, when applied to the scale of entire ecosystems, this assumption appears to not be correct." 

To test the assumption on the scale of ecosystems, the team developed a new mathematical theory that assesses the relative importance of several hypothesized drivers of net primary productivity. That theory was then evaluated using a massive new data set assembled from more than 1,000 forest locations across the world. 

The analysis revealed a new and general mathematical relationship that governs worldwide variation in terrestrial ecosystem net primary productivity. The team found that plant size and plant age control most of the variation in plant productivity, not temperature and precipitation as traditionally thought. 

"This general relationship shows that climate doesn't influence productivity by changing the metabolic reaction rates underlying plant growth, but instead by determining how large plants can get and how long they can live for," said Sean Michaletz, lead author of the study and a postdoctoral researcher in the UA Department of Ecology and Evolutionary Biology. "This means that plants in warm, wet environments can grow more because their larger size and longer growing season enable them to capture more resources, not because climate increases the speed of their metabolism." 

The finding does not, however, mean that climate is unimportant for plant productivity, the researchers noted. 

"Climate is still an important factor, but our understanding of how it influences ecosystem functioning has now changed," Michaletz said.    

The team's findings suggest that mathematical models used for predicting the effects of global climate change can be improved by accounting for the effects of plant size and plant age on net primary productivity. 

"Understanding exactly how climate controls net primary production is important for understanding the plant-atmosphere feedbacks that control climate change," Michaletz said. 

Enquist added: "In other words, to better predict how ecosystems will change with climate, we need to understand what influences the amount of plant biomass in a given area as well as its age." 

Research paper: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13470.html  

Contacts

Sean Michaletz

UA Department of Ecology and Evolutionary Biology

520-626-3336

michaletz@email.arizona.edu

Brian Enquist

UA Department of Ecology and Evolutionary Biology

520-626-3329

benquist@email.arizona.edu

Shelley Littin

University Relations, Communications

319-541-1482

littin@email.arizona.edu

Shelley Littin | University of Arizona

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>