Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All the Same Size

25.10.2010
Assembly of uniformly pure protein microparticles using calcium carbonate templates

Proteins are an interesting class of drugs because they demonstrate high biological activity and are highly specific in their effects. It has become possible to produce more and more proteins with tailored pharmacological properties; however transport and controlled release of the protein drugs in the body have remained a challenge.

In the journal Angewandte Chemie, Helmuth Möhwald of the Max Planck Institute of Colloids and Interfaces in Golm/Potsdam (Germany) and Dmitry V. Volodkin and Regine von Klitzing of the TU Berlin (Germany) have now introduced an alternative to the usual transport agents, such as liposomes: by using a simple, inexpensive, gentle process, they were able to produce pure protein microspheres of uniform size.

Loading nano- and microscale transport systems with proteins is the most common strategy used to bring drugs to their target area and achieve a longer period of activity. The challenge is to produce particles with a precisely defined quantity of protein, size, morphology, composition, and density. These characteristics are critical for the attainment of high bioavailability and a defined rate of release at the desired location. Unfortunately, they are difficult to control when using conventional methods for the production of protein particles, such as crystallization, spray drying, or incorporation in liposomes or polymer matrices. Another disadvantage is that these processes generally require organic solvents, high temperatures, or other conditions that can compromise the stability of the proteins.

The researchers were looking for a method that would deliver uniform protein particles without destructive additives and under mild conditions. The team has now developed such a method, which is also very simple and inexpensive, and successfully tested it on insulin, a classic therapeutic protein. The secret to their success lies in porous calcium carbonate microspheres of defined size, and a change of pH value. In a slightly alkaline aqueous environment (high pH value), the protein insulin is soluble. When the calcium carbonate spheres are added to such a protein solution, their pores are filled with the insulin solution. When the solution is then neutralized with acid, the insulin becomes insoluble and precipitates out in the pores. If the solution is acidified further, until the calcium carbonate spheres slowly begin to dissolve in the slightly acidic solution. The insulin remains behind as a loose matrix, which shrinks down into compact micrometer-scale spheres. This results in protein particles of uniform size and high protein density.

Author: Dmitry V. Volodkin, Technische Universität Berlin (Germany), http://www.chemie.tu-berlin.de/klitzing/menue/ueber_uns/arbeitsgruppe/volodkin/

Title: Pure Protein Microspheres by Calcium Carbonate Templating

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201005089

Dmitry V. Volodkin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemie.tu-berlin.de/klitzing/menue/ueber_uns/arbeitsgruppe/volodkin/
http://dx.doi.org/10.1002/anie.201005089

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>